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A B S T R A C T   

Upcycling is an eco-friendly method that turns waste into valuable items. Elemental sulfur, a waste substance 
produced in large amounts (70 million tons per year), can be converted into valuable polymers using inverse 
vulcanization. However, the traditional method had significant limitations, such as limited consumption and 
weak strength. To address this problem, we newly fabricated sulfur-based pressure-sensitive adhesives (PSAs). 
PSAs are soft and tacky materials that should have low modulus, and they are used extensively (3.1 million tons 
per year). We prepared sulfur-based PSAs in four steps: polymerization, dissolution, coating/drying, and curing. 
In the polymerization step, castor oil and oleic acid were employed to facilitate inverse vulcanization. The 
resulting polymer then underwent solvent-based depolymerization to be coated in a film form. After drying and 
ultra-violet (UV)-induced curing, the tapes were successfully produced. Significantly, we adjusted the PSA’s 
crosslinking density by changing the oleic acid content and UV dose. As the amount of mono-functional oleic acid 
decreased or the UV dose increased, the resulting PSA’s crosslinking density increased. The best conditions led to 
PSAs with excellent adhesion performances and creep resistance, similar to commercial tapes. Moreover, the 
prepared PSAs exhibited self-healing properties, suggesting the feasibility of high-performance PSAs like 
remoldable PSAs and conductive sensors.   

1. Introduction 

A distinctive technique called upcycling holds the potential to 
transform waste into valuable products, offering a promising avenue 
toward achieving environmental sustainability. Elemental sulfur, with 
an annual production of 70 million tons resulting from the desulfur-
ization of crude oil and natural gas [1], represents one such waste stream 
that warrants consideration. Despite its direct utilization in fertilizers 
and the rubber industry, substantial quantities of surplus sulfur accu-
mulate annually due to its limited consumption. 

The domain of polymers holds the most auspicious potential for the 
large-scale upcycling of sulfur waste [2]. The most straightforward 
technique to create sulfur polymers involves self-polymerization initi-
ated by thiyl radicals, which emerge through the homolytic cleavage of 

S–S bonds. Nevertheless, the utilization of this method to generate 
sulfur-based polymers faces challenges due to the depolymerization 
caused by the backbiting of terminal sulfur radicals [3]. To address this 
issue, Pyun and coworkers [4] introduced the concept of inverse 
vulcanization, employing multi-functional crosslinkers to curb the un-
desirable recombination of terminal sulfur radicals. Since the inception 
of this groundbreaking approach to inverse vulcanization, extensive 
research has been undertaken to produce high-value products endowed 
with distinctive functionalities like electrochemical properties [4–7], 
dynamic covalent bonding [8–10], infrared transmittance [10–14], 
metal sorption [15–20], and adhesive property [21–23]. However, these 
applications typically necessitate only marginal quantities in global 
production, falling short of adequately consuming the surplus sulfur. A 
notable limitation of most polymers synthesized via inverse 

Abbreviations: PSA, Pressure-Sensitive Adhesive; Tg, Glass transition temperature; THF, Tetrahydrofuran; UV, Ultraviolet; DSC, Differential scanning calorimetry; 
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vulcanization is their deficient mechanical strength, significantly con-
straining their potential applications. 

Pressure-sensitive adhesive (PSA) is a polymer-based material that 
exhibits excellent adhesion by light pressure owing to its inherent 
tackiness [24,25]. This can be considered the best candidate for the 
potential application of sulfur-based polymer for two reasons. Firstly, 
most PSAs exhibit lower mechanical strength than other polymer-based 
materials. This is because the storage modulus of PSA necessitates 
appropriate reduction to facilitate optimal interfacial wetting between 
the PSA and the substrate [26–28]. Secondly, the substantial global 
production scale of PSAs (amounting to 3.1 million tons in 2016) [29] 
further supports their utility. 

Commonly, PSAs are supplied as “tape”, comprising a backing film 
coupled with a PSA layer. Preparing a PSA layer on a backing film re-
quires the application of a polymer resin in a liquid state, followed by its 
solidification. In this procedure, incorporating organic substances, 
water, or prepolymer is feasible to render the PSA resin amenable to 
coating [25]. Notably, the viscous prepolymer can be prepared through 
methods such as inverse vulcanization utilizing monoene [8] or step 
curing [30], yet controlling the viscosity of the prepolymer resin and the 
degree of crosslinking in the final products presents challenges. 

Herein, we introduce a novel approach involving inverse vulcani-
zation and solvent-based depolymerization for the purpose of upcycling 
sulfur waste into PSAs. The synthetic procedure, shown in Fig. 1a, 
comprises four distinct steps: (i) polymerization, (ii) dissolution, (iii) 
coating/drying, and (iv) curing. In the polymerization step, inverse 
vulcanization was conducted using castor oil and oleic acid (Fig. 1b). 
The resultant polymer was dissolved within a solvent to produce PSA in 
a film form. Next, the crosslinking degree, reduced for dissolution, was 
increased again through ultra-violet (UV) curing after film drying. This 
comprehensive methodology facilitates rapid, thin, and uniform film 
production, and the resulting PSAs exhibit sufficient adhesion to be used 
as tape. Additionally, dynamic covalent bonds imparted self-healing 
properties to the PSAs, further extending their potential utility. 

2. Results and discussion 

2.1. Design strategy 

Two primary considerations are essential for the production of 
sulfur-based tape formulation. First, it is crucial to utilize reactive 
compounds containing multiple vinyl groups to induce the polymeri-
zation of elemental sulfur (≥99.0 %, Sigma-Aldrich) through inverse 
vulcanization. Castor oil (Sigma-Aldrich), an inexpensive and sustain-
able resource, was employed to facilitate inverse vulcanization [31–35]. 
Second, given that PSAs exhibit adhesive properties at typical applica-
tion temperatures, careful attention must be given to their glass transi-
tion temperature (Tg), ideally 25–45 ◦C lower than the usage 
temperature [36]. To address this requirement, oleic acid (Sigma-Al-
drich), featuring one vinyl group in a single molecule, was employed to 
adjust the resulting polymer’s Tg. These two monomers possess notably 
high boiling points (313 ◦C for castor oil and 360 ◦C for oleic acid), 
thereby enabling inverse vulcanization, executed at an elevated tem-
perature of 170 ◦C. 

Following polymerization, the resultant polymer was dissolved in 
tetrahydrofuran (THF), formulating a viscous resin through the cleavage 
of disulfide bonds within the chain structure. The derived resin was 
subsequently applied in film form onto a 50 μm-thick polyethylene 
terephthalate backing film. After that, the solvent and H2S gas were 
eliminated during the drying step (100 ◦C, 2 min). However, due to the 
relatively low extent of crosslinking exhibited by the PSAs post the 
dissolution and drying process, their capacity to endure high tempera-
tures and creep were diminished, making them unsuitable for use as 
commercial tape [37–41]. Consequently, the fractured disulfide bonds 
underwent a re-crosslinking process to enhance the thermal and creep 
resistance of the resultant PSA layers. This crosslinking step was driven 
by UV light instead of heat to prevent any possible damage to the 
backing film due to high temperatures. 

2.2. Polymerization and dissolution behavior 

For inverse vulcanization, elemental sulfur was mixed with castor oil 

Fig. 1. a) Schematic illustration for preparing tape from waste via inverse vulcanization of sulfur and solvent-based depolymerization. b) Chemical structure of the 
starting materials and prepared tape. 
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and oleic acid. The proportion of elemental sulfur by weight remained 
constant at 25 %, while two different monomers were employed in 
varying ratios. The inverse vulcanization was conducted at 170 ◦C with 
vigorous stirring. After obtaining a rubber-like product (Fig. S1), the 
reaction was terminated by cooling to room temperature (RT = 25 ◦C). 
Incorporating multi-functional castor oil resulted in a crosslinked 
network, whereas the mono-functional oleic acid led to a linear polymer 
chain. Consequently, as the quantity of oleic acid was augmented, the 
solidification time was prolonged, extending from 46 to 76 min (Fig. 2a). 
To assess the extent of inverse vulcanization, the reduction in the 
number of C––C bonds within the monomers was estimated through 
nuclear magnetic resonance spectroscopy (Fig. 2a and Fig. S2). As the 
amount of oleic acid was increased, the final conversion experienced a 
slight rise, elevating from 54.3 to 82.9 %. This phenomenon was 
attributed to the extended reaction time stemming from the presence of 
oleic acid. 

Next, the synthesized polymer’s glass transition temperature (Tg) 
was evaluated using differential scanning calorimetry (DSC). As the 
oleic acid led to the formation of a linear polymer structure rather than a 
crosslinked network, the Tg displayed a reduction with increasing oleic 
acid content (Fig. 2b). Once the proportion of oleic acid surpassed 10 wt 
%, the resultant polymers demonstrated a notably diminished Tg value 
(− 27.7 ◦C), making them suitable for application as PSAs under RT 

conditions. Moreover, the DSC results validated the degradation stabil-
ity, as evidenced by the absence of a distinct melting peak corresponding 
to elemental sulfur after 24 h of storage (Fig. S3). 

After the inverse vulcanization, the resultant polymer was dissolved 
in THF at a fixed concentration (10 %) and temperature (50 ◦C). 
Immediately after dissolution, the gel content decreased with oleic acid 
augmentation, but all showed an 80 % or more gel content (Fig. 2b). As 
time elapsed, the gel was gradually decomposed (Fig. S4), accompanied 
by the transformation of the initially opaque solution into a transparent 
state (Fig. S5). The synthesized polymer without oleic acid maintained a 
high gel content (>80 %) even after 72 h (Fig. 2c). However, upon 
exceeding a 10 wt% proportion of oleic acid, the resulting polymer was 
fully dissolved within 48 h. This result elucidates that incorporating 
oleic acid expedited the dissolution process, reducing overall process 
time. 

2.3. Rheological properties and adhesion performances 

In the inverse vulcanization and dissolution, it was established that 
introducing oleic acid at concentrations of 10 wt% or higher led to the 
polymer produced exhibiting sufficiently reduced Tg and enhanced 
dissolution characteristics. Consequently, PSAs were formulated incor-
porating 15 and 20 wt% of oleic acid, and their rheological properties 

Fig. 2. a) Inverse vulcanization behavior (solidification and conversion) and b) properties of the synthesized polymer (Tg and gel content). c) Change of gel content 
as a function of dissolution time. The elemental sulfur content was fixed at 25 %. 
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and adhesion performances were subjected to analysis. The dissolved 
polymer solution was applied as a film with a thickness of 25 μm, fol-
lowed by a drying step at 100 ◦C lasting 2 min. Subsequently, the dried 
PSA films underwent curing via exposure to UV radiation (intensity: 500 
mW/cm2) to regenerate a crosslinked network structure via UV-induced 
dynamic exchange of S–S bonds [42–44]. 

The initial step involved conducting a temperature sweep test to 
confirm the PSAs’ Tg and high-temperature modulus (Fig. 3a and b). 
When the amount of UV dose increased from 0 to 5 J/cm2, there was a 
corresponding increase in the stiffness of the crosslinked structure, as 
indicated by the plateau modulus. This result suggests that UV light 
effectively induced the formation of the crosslinked network, enhancing 
the high-temperature modulus and crosslinking density (Fig. S6). 
Comparing cured PSAs containing 15 and 20 wt% of oleic acid, those 
with 15 wt% exhibited a higher plateau modulus and crosslinking 
density. This difference can be attributed to the property of oleic acid to 
induce the formation of a linear polymer structure. Concerning the Tg, 
no notable variations were observed among the cured PSAs. While PSAs 
with 15 wt% of oleic acid displayed a slightly elevated Tg (− 18.5 ◦C) 
compared to those with 20 wt% of oleic acid (− 20.2 ◦C), the difference 
was minimal. Furthermore, exposure to UV light did not substantially 
alter the Tg, and all PSAs exhibited sufficiently low Tg values, making 
them suitable for application as commercial tape. 

The verification of a crosslinked structure resulting from UV expo-
sure was also corroborated through the “creep and recovery” test results 
(Fig. 3c and d). As the amount of UV dose increased, creep deformation 
was strictly suppressed, and the strain was rapidly recovered after 
removing the applied stress. Additionally, the adhesive formulated with 

15 wt% of oleic acid displayed reduced creep deformation and superior 
recovery compared to the 20 wt% variant. This improvement can be 
attributed to the higher crosslinking density in the adhesive with 15 wt% 
of oleic acid. In other words, the system we established effectively 
controls the degree of crosslinking density by adjusting the oleic acid 
content and the UV dose. Importantly, our method could be useful for 
making adhesives for flexible displays where precise control of the ad-
hesive’s crosslinking density is crucial [40,41]. 

After assessing the rheological properties of the PSAs, we fabricated 
the PSAs into a tape structure that consisted of a backing film bonded 
with a PSA layer. The prepared tapes were slightly yellowish but 
transparent (Figur 3e). Adhesion performances were evaluated by a 
180◦ peel test (Fig. 3f), employing stainless steel as the substrate. With 
increased crosslinking density due to exposure to UV irradiation, peel 
strength rose due to heightened cohesive strength (Fig. 3g). When the 
oleic acid content was 20 wt%, and the UV dose was 2 J/cm2, the 
resulting PSA exhibited high adhesion strength (peel strength: 2.96 N/ 
cm) and creep resistance (creep strain: 13.3 %). Notably, this peel 
strength value closely resembles that of tapes available in the market 
[45–47], suggesting the potential for our approach to yield commer-
cially viable tapes. However, subjecting the tapes to excessive UV irra-
diation (5 J/cm2) significantly reduced the peel strength due to 
diminished surface wetting. The decline was more pronounced in the 
tapes containing 15 wt% oleic acid than those with 20 wt%, owing to the 
higher level of crosslinking density [37]. This result underscores the 
critical importance of optimizing UV exposure conditions and adhesive 
formulation to attain optimal adhesive performance. 

Fig. 3. Temperature sweep test results of the cured PSAs containing a) 15 wt% and b) 20 wt% of oleic acid. Creep and recovery test results of the cured PSAs 
containing c) 15 wt% and d) 20 wt% of oleic acid. e) Appearance of the prepared PSAs, f) test scheme, and g) results for the 180◦ peel test. Detailed information is 
described in supporting information. 
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2.4. Self-healing property 

As the S–S bonds in the polymer can be easily exchanged by heat, the 
PSAs we prepared were expected to exhibit self-healing properties. A 
rheology test was conducted to assess the self-healing properties of the 
prepared PSAs. This test involved two main steps: a damaging step 
(applied strain and time: 500 % and 100 s) and a recovery step (applied 
strain and time: 1 % and 300 s). During the damaging step, there was a 
sharp decline in the storage modulus (G′), indicating that the internal 
bonds of the PSA broke due to the high strain. Subsequently, with lower 
strain, the G′ value increased again during the recovery step, suggesting 
that the PSAs had healed themselves. As shown in Fig. 4, the ability of 
the PSAs to self-heal was strongly related to the healing temperature 
rather than the oleic acid content. At a low temperature (60 ◦C), the 
PSAs with 15 and 20 wt% of oleic acid were not sufficiently healed, 
showing a decrease in G′ of the third recovery step. Remarkably, at a 
temperature of 100 ◦C, the PSAs exhibited exceptional self-healing 
characteristics, displaying a higher G’ value after healing than the 
original value before the damaging step. This outcome can be attributed 
to additional bonding formed by the unreacted C––C in oleic acid and 
castor oil, effectively creating more crosslinks in the PSA. Through our 
approach, PSAs capable of self-healing were successfully prepared. We 
believe this methodology can fabricate functional PSAs, including 

remoldable PSA [48] and conductive sensors [49,50]. 

3. Summary and conclusions 

This study presented a comprehensive design strategy for fabricating 
tapes from industrial waste elemental sulfur. Preparation of pressure- 
sensitive adhesives (PSAs) from elemental sulfur consisted of four 
steps: (i) polymerization, (ii) dissolution, (iii) coating/drying, and (iv) 
curing. In the polymerization step, castor oil and oleic acid were 
employed to facilitate inverse vulcanization. The resulting polymer was 
then dissolved in tetrahydrofuran, and the solution was coated onto a 
backing film. Afterward, the solvent was dried, and the prepared film 
was exposed to ultra-violet (UV) light to regenerate crosslinks that 
enhance thermal and creep resistance. Crosslinking density was 
adjustable by changing the amount of oleic acid and UV dose, which 
influenced the rheological properties and adhesion performances of the 
PSAs. Notably, the optimized conditions (20 wt% oleic acid, 2 J/cm2 UV 
dose) yielded PSAs with excellent adhesion performances and creep 
resistance. This finding demonstrates the potential of our method to 
produce PSAs suitable for commercial tapes. Furthermore, these PSAs 
exhibited self-healing properties due to dynamic covalent bonds (S–S), 
suggesting the feasibility of innovative applications like remoldable 
PSAs and conductive sensors. 

Fig. 4. The prepared PSAs’ self-healing properties contain a) 15 wt% and b) 20 wt% of oleic acid. Detailed information is described in supporting information.  
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