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Abstract: In recent years, there has been an increasing need for materials that are environmentally 
friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which 
has attracted research attention as an eco-friendly material. Various studies have been conducted 
on functionality imparting and performance improvement to extend the field of application of PLA. 
Particularly, research on natural fiber-reinforced composites have been conducted to 
simultaneously improve their environmental friendliness and mechanical strength. Research 
interest in hybrid composites using two or more fillers to realize multiple functions are also 
increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and 
can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using 
microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a 
composite material with improved endothermic characteristics, mechanical performance, and 
environmental friendliness. We analyzed the endothermic properties of MPCM and the structural 
characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and 
kenaf contents were varied to observe changes in the performance of the hybrid composites. The 
endothermic properties were determined through differential scanning calorimetry, whereas 
changes in the physical properties of the hybrid composite were determined by measuring the 
mechanical properties. 

Keywords: microencapsulated phase change material (MPCM); polylactic acid (PLA); toughening; 
endothermic effect; kenaf fiber; hybrid composites 

 

1. Introduction 

Polymer-based packaging materials are increasingly utilized because they are easy to process, 
can be molded into a variety of designs, and are lightweight [1–3]. The demand for materials with 
special functionality is increasing owing to their use in diverse applications such as ultraviolet (UV) 
absorption, special heating, and thermal shielding [4]. Among them, the heating function is one of 
the core functions required in biomedical and cosmetic industries, as the contents can be safely 
preserved from thermal deformation [5,6]. In addition, polymer-based packaging materials are 
developed as eco-friendly materials to mitigate environmental problems caused by waste generated 
during use [7,8]. 

Polylactic acid (PLA) is a thermoplastic polymer with a linear aliphatic polyester structure, 
which can be obtained by polymerizing monomers from renewable resources such as corn and potato 
starch [9,10]. PLA is biodegradable, environmentally friendly, and can be used in various 
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applications, such as bio-plastic. Therefore, the use of these biodegradable materials can reduce the 
burden on container waste and the cost of environmental preservation. Various studies have been 
conducted on imparting functionality and performance improvement to extend the field of 
application of PLA. Particularly, research on natural fiber-reinforced composites have been carried 
out to simultaneously improve the environmental friendliness and mechanical strength [11,12]. 

Phase change material (PCM) refers to thermal storage material used for controlling temperature 
changes [13]. PCMs are substances that accumulate or store heat through a type of physical change 
process from solid to liquid state, from liquid to solid state, from liquid to gaseous state, and from 
gaseous to liquid state. As the external temperature increases, the PCM reaches its own melting point. 
The material then changes phase from solid to liquid state and absorbs a certain amount of heat, 
known as melting enthalpy. The temperature of the material remains constant despite the application 
of heat. These properties are suitable for energy conservation and are increasingly utilized in the 
energy sector [14,15]. 

A fibrous, reinforced material with natural fibers has a low aspect ratio compared to 
conventional fibrous materials. Although its mechanical reinforcement performance is poor, its 
lightweight structure and low cost of the material makes it an economical option [16,17]. It also has 
the strength needed to maximize the utilization of biomass as well as to improve the durability of 
materials. PCM, on the other hand, is typically composed of a micro-shell type in which a shell 
protects the core material. Therefore, if the two materials are used simultaneously as fillers, other 
structural reinforcement effects can be achieved in one material. A composite material that utilizes 
such a heterostructure system is known as a hybrid composite material [18].  

Result predictions in hybrid composites are difficult, as they are expected to have different 
effects for different fillers. The direction of the analysis changes according to the degree of interaction 
between the filler and the matrix. In hybrid composites research based on natural fibers, synergistic 
effects are expressed using the interaction of the two fillers with the matrix [18]. In the study of 
ceramic and natural-fiber hybrid composite, only the change in strength of one filler has been 
confirmed [19]. 

In this study, we investigated changes in the mechanical properties when fillers with different 
structures are dispersed in a PLA matrix. The study aimed to verify the feasibility of developing eco-
friendly composites with improved endothermic characteristic and mechanical performance. In 
particular, we investigated the effect of toughening when using core-shell particles and the possibility 
of improving the performance. We analyzed the characteristics of PCM and kenaf fiber and 
investigated the feasibility of producing a new type of biocomposite material with multiple functions.  

2. Experimental 

2.1. Materials 

In this study, the polymer matrix used in green composites was PLA, which was obtained from 
NatureWorks LLC (Minnetonka, MN, USA). The PLA was provided in granular form with an 
average diameter of 81 m and density of 1.24 g/cm3. Its melt flow index (MFI), glass transition 
temperature (Tg), and melting temperature (Tm) were 7 g/10 min (210 °C/2160 g), 57.3 ± 0.6 °C, and 
146 ± 6 °C. Microencapsulated PCMs (MPCMs) were obtained from J&C Microchem, Inc. (Anseong-
si, Korea) and the core consisted of paraffin wax, whereas the shell was composed of melamine 
formaldehyde resin. The kenaf fibers were donated by Sutongsang Company (Gyeongju-si, Korea) 
which was manufactured as 200 meshes using a pulverizing machine. The fibers were laid out in 
plastic bags after drying at 80 °C for 24 h to remove excess moisture. 

2.2. Preparation of MPCMs/Kenaf Fiber/PLA Hybrid Composites 

The PLA was dried at 80 °C for 12 h and stored in polyethylene bags. The dried PLA pellets were 
compounded with 10 and 20 phr (parts per hundred resin) of MPCMs and 10, 30, and 50 phr of kenaf 
fiber using a laboratory sized twin-screw extruder (BA-19 in Bautek, Pocheon, Korea) The barrel of 
the extruder was divided into eight zones and the barrel temperature zones of the extruder when 
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extruding the materials were 185/195/200/200/200/195/165/140. The speed of the screws was 
maintained at 200 rpm. After extruding the materials, the extruded strand was cooled in a water bath 
and pelletized using a pelletizer (Bautek, Korea). The zone temperature control played a key role 
since the dispersion of the PCM and the kenaf fiber had to be induced. Table 1 presents the mixing 
conditions of the hybrid composite. In general, the higher the temperature, the better the flowability 
of PLA and the better the dispersion. However, when cellulose is the main component of natural 
fiber, it is carbonized when exposed for a long time at a temperature higher than 180 °C. Byproducts 
from carbonization should be minimized as they affect the color and physical properties of the 
composite. Therefore, the composite material should be made by varying the temperature and time 
conditions that minimize the carbonization of kenaf [19]. 

Table 1. PLA (polylactic acid) hybrid composite mixing conditions (weight ratio). 

Materials 
Matrix Filler 

PLA MPCM Kenaf Fiber 

HC.PLA 1-0 

100 

10 

0 

HC.PLA 1-1 10 

HC.PLA 1-3 30 

HC.PLA 1-5 50 

HC.PLA 2-0 

20 

0 

HC.PLA 2-1 10 

HC.PLA 2-3 30 

HC.PLA 2-5 50 

2.3. Characterization  

2.3.1. Scanning Electron Microscopy (SEM) 

Field emission scanning electron microscopy (FE-SEM, SUPRA 55VP, Carl Zeiss, Oberkochen, 
Germany) was performed at acceleration voltage of 10 kV to observe the morphology of the MPCMs. 
Before the measurement was carried out, the sample was pre-coated with a homogeneous platinum 
layer (purity, 99.99 %) by ion sputtering to eliminate electron charging. 

2.3.2. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) was performed using a DSC Q200 system (TA 
Instruments, Chicago, IL, USA) with an RCS 90 refrigerator cooler to determine the glass transition 
temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of the MPCMs and 
composites. Approximately 5 mg of the sample was loaded in a Tzero aluminum pan and high-purity 
nitrogen gas was used as purge gas at a flow rate of 50.0 mL/min. The samples were scanned from 0 
to 150 °C at a heating rate of 5 °C/min.  

2.3.3. Tensile and Flexural Strengths 

The tensile and flexural strengths of the specimens were measured using a universal testing 
machine (AllroundLine Z010, 2000N load cell, Zwick, Ulm, Germany) according to the ASTM D 638–
10 and ASTM D 790–10 standard test methods. A cross speed of 5 mm/min was used during the 
measurement and the mechanical properties were analyzed at room temperature. Six specimens were 
measured to calculate the margin of error. 

2.3.4. Izod Impact Test 

The Unnotched Izod Impact Strength tests were conducted at room temperature. Each value 
obtained represents the average for five samples. 

3. Results and Discussion 
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The basic characteristics of the MPCM used in this study were analyzed. The SEM image and 
thermal properties of the PCM microcell used in this study is shown in Figure 1. The material was 
partially composed of small particles, mostly in the range of 10–20 μm. DSC was used to identify the 
endothermic part of MPCM. Furthermore, a cycle test was conducted to determine the stability of 
MPCM, as it exhibits different thermal characteristics during the heating and cooling process. In this 
study, we focused on the characteristics of temperature rise.  

 
Figure 1. Basic characteristics of microencapsulated phase change material (MPCM): (a) SEM image 
(×2000); (b) endothermic/exothermic reaction (bottom—elevated temperature, above—decreased 
temperature) with DSC; (c) cycle test with DSC. 

Figure 2 shows the results of the DSC analysis of hybrid composites with a PCM content of 10 
phr. When a composite material is formed, the thermal properties of the material are changed by the 
interaction of the matrix and filler. In this study, the inherent endothermic characteristics of PCM 
should be fully reflected. Three specific temperature changes can be confirmed by DSC measurement. 
Zone (A) is the crystallization zone of PLA. The crystallization temperature of PLA is 89.7 °C; in this 
study, the crystallization temperature was determined as 87.1 °C when only PCM was used and 79.4, 
87.8, and 88.4 °C when 10, 30, and 50 phr of kenaf were used, respectively. Thus, the use of PCM 
resulted in some reduction in the crystallization temperature. This is because the fine particles of 
PCM serve as a nucleus of PLA crystallization. In this case, when 10 phr of kenaf was added, the 
crystallization temperature decreased sharply. Small amounts of fibers and PCM particles can 
improve the mobility of PLA and accelerate crystallization in this process. The particles may also 
serve as a starting point for some crystallization. However, as the content of kenaf increases, the 
crystallization temperature increases. As the ratio of fibers increases, the formation of the crystal 
structure inside the polymer is limited, which affects the increase in the crystallization temperature. 
Zone (B) is the primary endothermic section formed by PCM; the primary endothermic interval is 
determined by the change in paraffin wax, which constitutes the PCM. The primary endothermic 
section of the PCM is 49.1 °C. Such an endothermic section cannot be confirmed at neat PLA. In this 
study, the primary endothermic section was formed in the range of 47–49 °C when PCM was utilized; 
this endothermic section also occurred when kenaf was used. Zone (C) is the core endothermic phase 
by PCM. PCM exhibited the largest endothermic characteristic at 66 °C. The core endothermic phase 
showed a characteristic that appears at the Tg of PLA, which was formed at 61 °C. However, in the 
hybrid system, the maximum endothermic characteristic occurred at 62 °C. This was determined to 
be influenced by the phase change of PLA. Figure 2c shows that the change in the endotherm is not 
affected by kenaf fiber. The PCM/PLA composites have a higher first endothermic section and a lower 
second endothermic section compared to neat PCM. The reason the temperature of the first 
endothermic section is higher is that heat conduction is delayed inside the composite material. On 
the other hand, it can be interpreted that the second endothermic section changes together with the 
Tg of the PLA. 
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Figure 2. Analysis of heat absorption characteristics of PLA hybrid composites with phase change 
material (PCM) 10 phr: (a) Entire temperature range showing the crystallization section (A); (b) 
expansion of the heat absorption section showing the primary endothermic section (B) and the 
secondary endothermic section (C); (c) endothermic temperature of each sample. 

The results of the DSC analysis of hybrid composites with a PCM content of 20 phr are shown 
in Figure 3. As the content of PCM increased, the main peak became more pronounced. The 
crystallization temperatures were 84.8 °C for only PCM 20 phr, and 77.6 °C, 82.2 °C, and 86.5 °C for 
10 phr, 30 phr, and 50 phr, respectively. When kenaf was used, the endothermic temperature was 
partially reduced, however, it tended to increase minimally as the content increased. Zones (B) and 
(C) are similar to those obtained in PCM 10 phr test group. It was observed that the endothermic 
curve was more pronounced owing to the increase in the content of PCM.  

 
Figure 3. Analysis of heat absorption characteristics of PLA hybrid composites with PCM 20 phr: (a) 
Entire temperature showing the crystallization section (A); (b) expansion of the heat absorption 
section showing the primary endothermic section (B) and the secondary endothermic section (C); (c) 
endothermic temperature of each sample. 

Figure 4 shows the change in the tensile strength according to the content of kenaf with PCM 10 
phr. When PCM was used, the tensile strength was slightly reduced, however, the reduction in 
strength was restored by adding kenaf. The notable result was that the tensile elongation increased 
as the strength was maintained. In general, the use of fibers such as kenaf increases the stiffness of 
the composite and thus tends to decrease tensile elongation. This tendency is considered to be due to 
the structural characteristics of PCM. Unlike kenaf, PCM is free of strain. These deformation 
characteristics complement the section where the fracture is formed during the tensile process. As a 
result, resistance to fracture tends to improve, which is known as the toughening effect. In general, 
PLA is a brittle polymer, and such properties must be improved when the material is used. This trend 
has the same effect even when the content of PCM increases. As shown in Figure 5, the tensile strength 
decreased significantly when the content of PCM was increased to 20 phr. However, tensile strength 
recovery by kenaf fiber occurred in a similar process. The tensile elongation was larger at small 
contents of PCM. PCM was distributed throughout and served to compensate for the increase in 
stiffness due to kenaf. It can be concluded that PCM, which is a spherical particle, and kenaf, which 
is a linear particle, complement each other. The use of linear fillers increases the modulus of elasticity, 
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but leads to brittleness. When a spherical filler is used, the impact absorption properties are 
strengthened, whereas the tensile strength is weakened. However, the two materials used in this 
study tend to overcome the disadvantages of using each material individually through a synergistic 
effect [20]. 

 
Figure 4. Tensile strength of PLA hybrid composites with PCM 10 phr: (a) Maximum stress (Fmax); (b) 
strain at Fmax. 

 
Figure 5. Tensile strength of PLA hybrid composites with PCM 20 phr: (a) Maximum stress (Fmax); (b) 
strain at Fmax. 

Figure 6 shows a graphical representation of the changing tensile failure phenomena when 
MPCM was used. The improved tensile properties of MPCM were due to the increased degree of 
freedom, which changed internally through the use of MPCM. A neat PLA is a material with Poisson's 
ratio of 0.36 [21] and is vulnerable to deformation. However, if the MPCM is dispersed internally, it 
compresses, making it relatively advantageous to vary the tensile strength. The tensile strength 
characteristics change depending on the structural characteristics [22]. When hybrid filler is used, the 
spherical filler is placed between the fibrous filler and matrix and the fluidity of the polymer is 
enhanced. Therefore, the hybrid filler exhibits a completely different characteristic compared to when 
it is used individually. The use of two fillers tends to increase brittleness, however, when used 
together, a synergistic toughening effect can be expected [23,24]. 
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Figure 6. Estimation of the toughening effect according to use of MPCM: (a) Neat PLA; (b) PLA with 
MPCM. 

Figure 7 shows the S–S curve from the tensile strength test of each sample. In Figure 7a,b, the 
strength decreased when PCM was used, whereas the graph tended to move upward when kenaf 
was used. At a PCM content of 10 phr, the graph shifted to the right as the kenaf content increased, 
whereas at a PCM content of 20 phr, the graph shifted to the left as the kenaf content increased. The 
shift in the graph indicates that the characteristics of the material were changing. At a small content 
of PCM, a hybrid effect occurred between PCM and kenaf fibers, whereas when the PCM content 
increased, it can be considered that a negative effect occurred in the spatial arrangement. PCM, which 
spatially occupies a large area, inhibits the dispersion of kenaf fibers so that a negative result can 
occur. At a PCM content of 10 phr, the tensile strength increased slightly when kenaf was added, 
whereas the strength tended to decrease slightly at a PCM content of 20 phr. The two trends can be 
interpreted to be due to the increase in the spatial ratio of the PCM and kenaf fibers in the composite 
material. The distribution of the matrix is important for the composite material to exhibit sufficient 
mechanical strength. As the filler content increased, the dispersion and bonding of the filler were 
adversely affected. 

 
Figure 7. S–S curve from tensile strength test: (a) PCM 10 phr; (b) PCM 20 phr. 

Figure 8 shows the change in the flexural strength according to the content of kenaf for PCM 10 
phr. The flexural strength tended to be quite different from the tensile strength. As the content of 
kenaf increased, both the flexural strength and the maximum load deflection tended to decrease. The 
fibers did not play a major role in reinforcing the mechanical strength during the bending process, 
since the surface of the kenaf fiber was not subjected to any surface treatment. In addition, PCM has 
a relatively flexible shell. The shell compensates for fracture during deformation in the tensile 
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process, however, in the bending process, it reduces the flexural strength according to the fracture 
due to compression and weak interfacial bonding characteristics. When the content of PCM increased 
to 20 phr, a larger decrease occurred. However, as shown in Figure 9, the flexural strength seemed to 
be partially restored by the partial reinforcement effect of the fibers. There was no overall tendency 
for PCM 20 phr. This is because the bending strength decreased significantly when only the PCM 
was used. It is considered that even if kenaf fibers were used, the strength could not be supplemented. 

 
Figure 8. Flexural strength of PLA hybrid composites with PCM 10 phr: (a) Maximum stress (Fmax); 
(b) deflection at Fmax. 

 
Figure 9. Flexural strength of PLA hybrid composites with PCM 20 phr: (a) Maximum stress (Fmax); 
(b) deflection at Fmax. 

Figure 10 shows the S–S curve obtained from the flexural strength test of each specimen. As the 
filler was used differently compared to the tensile strength, the slope of the graph increased, and the 
maximum strength tended to decrease. The S–S curves between samples were not significantly 
different under PCM 20 phr conditions. These results highlighted the irregularity of the results in 
Figure 9. The fracture shape at the flexural strength showed a completely different tendency 
compared to that of the tensile strength. In the process of using the composite filler, the destruction 
tended to proceed straight after the yield point. The elastic modulus at the flexural strength can be 
expressed by the following equation [25]: 

Flexural modulus = 𝐹𝐿ଷ

4𝑤𝑑ℎଷൗ  (1)

where L is the support span, w and h are the width and height of the beam, respectively, and d is the 
deflection due to the load F applied in the middle of the beam. In this case, L/(wh) is constant. 
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Therefore, the elastic modulus is proportional to the strength and inversely proportional to the 
deflection. 

Flexural modulus ∝ 𝐹
𝑑ൗ  (2)

 
Figure 10. S–S curve of flexural strength test: (a) PCM 10 phr; (b) PCM 20 phr. 

Figure 11 shows the scale factor of the flexural modulus. The utilization of PCM served to reduce 
the scale factor. This means that PCM did not play a strong binding role in compression and 
tensioning of the material. On the other hand, when kenaf was used, the scale factor tended to 
increase as the content increased. The increase in the elasticity factor was considered to be due to the 
fiber-reinforcing effect. The strong elastic force of the fiber was reflected in the interaction with the 
fiber, but the bond with the fiber deteriorated, leading to the destruction. These characteristics were 
considered to be the result of the short fiber-reinforced structure. 

 
Figure 11. Scale factor of flexural modulus: (a) PCM 10 phr; (b) PCM 20 phr. 

Figure 12 shows the impact strength evaluation results of each specimen. When PCM was 
utilized, the impact strength tended to increase, whereas when kenaf was used, the impact strength 
tended to decrease. When PCM alone was used, the impact strength greatly increased when 10 phr 
is used, but when the PCM was used at 20 phr, the strength tended to decrease again. The impact 
strength was improved when the spherical filler is used, but the strength tended to reduce when the 
specific amount was exceeded. As the amount of filler increases, the bond between the fillers also 
strengthens. The optimum content depends on the size and shape of the filler [26]. In the previous 
tensile strength test, the tensile elongation increased, but the tensile strength did not change 
significantly. Overall, the modulus of elasticity tended to decrease, which indicates that the material 
itself was becoming soft. It can be deduced that the impact strength tended to decrease as the physical 
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properties of the material weakened. In general, the fiber reinforced composite material tended to 
exhibit increased impact strength depending on the fiber content. However, in this case, it can be 
expected that the fiber acted as a crack initiation point for reducing the impact strength owing to the 
weak bonding force between the fiber and the matrix. Thus, the increase in the fiber content had a 
negative effect. 

 
Figure 12. Impact strength of PLA hybrid composites. 

Figure 13 shows the toughening effect process of MPCM. The toughening effect of MPCM was 
confirmed again by the impact strength evaluation. When an external impact is applied, it is possible 
to change the fracture pathway and at the same time absorb the impact so that excellent toughening 
effect can be achieved. The impact absorption characteristics tended to decrease with the content 
because the porosity increased inside the composite due to an increase in the bonds between the 
particles present in Figure 13. 

 
Figure 13. Toughening effect according to use of MPCM under external effect: (a) Neat PLA; (b) PLA 
with MPCM. 
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4. Conclusion 

Hybrid composites fabricated using MPCM and kenaf fibers reflect the characteristics of the 
fillers. The endothermic characteristics tended to increase as the content of PCM increased. The use 
of kenaf fibers reinforced both the tensile strength and elongation. However, both fillers had a 
negative influence on the flexural strength. The toughening effect of the micro-shell was verified by 
evaluating the impact strength. The results showed that the weaker interfacial bonding force had a 
negative effect on the impact strength. By combining the fillers with two different structures and 
functions, we identified areas where complementary effects were realized and where they were not. 
Therefore, the findings of this study will be useful in developing eco-friendly composites with 
improved functions in the future. 
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