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Abstract 

 

 

Surface modification of hydroxyapatite with PLGA and 

properties of PLGA/HA composites with different preparation methods 

 

Jin-Uk Hwang 

Program in Environmental Materials Science 

The Graduate School 

Seoul National University 

 

In this study, poly(lactide-co-glycolide) (PLGA) polymer chains were directly grafted onto 

the surface hydroxyl groups of hydroxyapatite (HA) to observe the effects of HA surface 

modification on the interfacial adhesion, and thus the properties, of PLGA/PLGA-g-HA 

composites. Spectroscopic analysis indicated ester linkage formation at the HA surface, with 

the grafted polymer content of 10.032 wt%. Solid-state 1H nuclear magnetic resonance spectra 

indicated that the amount of HA surface hydroxyl groups decreased by 3.125% after grafting. 

Molecular weight reduction was measured by gel permeation chromatography. X-ray 

diffraction patterns and scanning electron microscopy micrographs further verified successful 

grafting. After grafting, PLGA/PLGA-g-HA composites were prepared via three different 

preparation methods. The thermal, mechanical, and viscoelastic properties of the composites 

were determined by differential scanning calorimetry, tensile testing, and dynamic mechanical 

analysis, respectively. The results show that the preparation method has important effects on 

the properties of the final PLGA/PGA-g-HA composite. 

 

Keywords: Poly(lactide-co-glycolide); Hydroxyapatite; Surface grafting reaction; Composite; 

Preparation method 

 

Student Number: 2017-25623 
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1. Introduction 

 

1.1. Biomedical implants 

 

Tendon tears such as rotator cuff tears and cruciate ligament tears often occur due to 

excessive or repetitive loads on shoulders and knees, which cause pain and dysfunction, as 

shown in Figure 1 and 2. These tears require surgical reconstruction involving fixation of 

tendon to proximal bone in order to hold the torn tendon tight in place until it is biologically 

healed (Cummins, Strickland et al. 2003), as shown in Figure 3. The ideal fixture for torn 

tendon should have enough mechanical strength to allow for rehabilitation exercises, sustain 

the musculoskeletal system until the complete healing occur, and be easily handled for surgery 

(Lee, Mahar et al. 2005). In the past, transosseous tunnels and suture anchors were used to 

repair a torn tendon. With the transition from open surgery to arthroscopic repair, medical 

metal implant (Figure 4(a)) was initially introduced. However, this kind of implant had several 

complications; Metal anchor is not bioabsorbable so that it would be left untouched even after 

healing process is completely done and could also cause a local inflammatory reaction around 

the implant. This indicates that the use of metal anchors involves subsequent revision surgery 

to remove retained anchors. Moreover, metal anchor interferes with postoperative magnetic 

resonance imaging (MRI) evaluation which monitors the adjacent tissue and bone reactions 

during the healing process (Barber, Elrod et al. 1995, Pawaskar, Kekatpure et al. 2015). 

Biodegradable polymer-based anchor as known as ‘bioscrew’ (Figure 4(b)) was introduced to 

overcome the shortcomings of the metal anchor. It has enough mechanical strength to fix torn 

tendon and sufficient sustained strength until complete healing. Due to its biodegradability, 

there is no requirement to involve subsequent revision surgery because it is gradually 

bioabsorbed after fulfilling its biomechanical function. Due to its biocompatibility, it is more 

suitable for recently attempted suture-less arthroscopic surgery which is to fix directly the 

rotator cuff to the proximal humerus without the arthroscopic difficulties of guiding sutures 

through tendon and tying secure knots. Furthermore, polymer anchor cause little interference 

for postoperative advanced imaging techniques in contrast with metal anchor (Lee, Mahar et 

al. 2005). Because of these practical advantages, bioabsorbable polymer-based anchors have 

been prevailingly utilized for biomedical implants. 
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(a) 

 

(https://goo.gl/images/d1DZXT) 

(b) 

 

(https://www.orthoindy.com) 

 

Figure 1. Structure and tears of anterior cruciate ligament (ACL): 

(a) Knee bones and ligaments 

(b) ACL tears  
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(a) 

 

(https://goo.gl/images/6a19bQ) 

(b) 

 

(https://goo.gl/images/CSfCRE) 

 

Figure 2. Structure and tears of rotator cuff: 

(a) Four rotator cuff muscles 

(b) Rotator cuff tears 
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(a) 

 
(https://goo.gl/images/1jaz1V) 

(b) 

 
(https://goo.gl/images/eyxvPE) 

 

Figure 3. Arthroscopic surgery for torn tendon using implant fixations: 

        (a) Graft tendon method for torn ACL reconstruction 

        (b) Suture anchor repair for torn rotator cuff reconstruction 
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(a) 

 

(https://goo.gl/images/GQwtik) 

(b) 

 

(https://goo.gl/images/jjbLaK) 

(https://goo.gl/images/2VYuZr) 

 

Figure 4. Commercially used interference screws: 

        (a) Metal interference screws 

        (b) Bioabsorbable interference screws (Bioscrews) 
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1.2. Biodegradable polymers for biomedical implants 

 

Much research on medical implants has attempted to create effective bone substitutes. Metal 

implants comprising stainless steel, Ti, and Co–Cr alloys are often used because they show 

good mechanical properties, but their high elastic moduli can damage adjacent bone. To 

resolve this problem, replacements based on polymers and ceramics have been developed. 

Representative polymers for biomedical application are presented in Figure 5. Biodegradable 

polymers such as poly(glycolic acid) (PGA), poly(L-lactic acid) (PLLA), and poly(D,L-lactic 

acid) (PDLLA) have been extensively used in the last two decades (Hong, Zhang et al. 2005, 

Erbetta, Alves et al. 2012). However, while PLLA experiences slow biodegradation because 

of its hydrophobicity, hydrophilic PGA biodegrades quickly. PDLLA has much poorer 

mechanical properties than PGA or PLLA because it is amorphous in nature. Therefore, 

poly(lactide-co-glycolide) (PLGA) was introduced to overcome these inherent disadvantages 

of PGA and PLLA. PLGA can be used for many biomedical applications because its 

mechanical strength and degradation rate can be modulated by manipulating the molecular 

weights and ratios of lactide and glycolide units (Nair and Laurencin 2007, Phua, Roberts et 

al. 2011, Azimi, Nourpanah et al. 2014). PLGA has been used as both porous scaffold 

structures (Ren, Ren et al. 2005, Hu, Gu et al. 2014) and electrospun fibers (Song, Ling et al. 

2013). However, this biodegradable polymer retains problems such as low biocompatibility 

and rapid losses in strength with degradation. 
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Figure 5. Biodegradable polymers for biomedical application 
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1.3. Biocomposites with bioceramics for biomedical implants 

 

Bioceramics such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have also 

attracted attention for medical purposes. Representative bioceramics for biomedical 

application are presented in Figure 6. HA is especially widely used as a bone substitute because 

it shows outstanding biocompatibility, originating from its chemical and crystallographic 

similarities to natural bone. HA also has advantages like non-toxicity, osteoconductivity, and 

osteoinductivity (Murugan and Rao 2003, Hong, Qiu et al. 2004, Hong, Zhang et al. 2005, 

Degirmenbasi, Kalyon et al. 2006). However, pure HA bioceramic is limited in applicability 

because it is fragile and non-biodegradable. To obtain all the advantages of biodegradable 

polymers and bioceramics simultaneously, composites of these two material types were 

developed. PLA/HA composites have attracted significant attention because they show good 

osteoconductivity, osteoinductivity, biodegradability, and mechanical strength; many medical 

products using these composites have been commercialized. However, they continue to show 

poor mechanical properties because insufficient interfacial adhesion between HA particles and 

the polymer matrix causes interfacial failure in the composite (Hong, Qiu et al. 2004, Qiu, 

Hong et al. 2005). To enhance interfacial adhesion, the surface of HA has been modified with 

various materials such as silane coupling agents (Borum and Wilson 2003), zirconyl salts 

(Misra 1985), polyacids (Liu, Bakker et al. 1998), polyethylene glycol (Wang, Li et al. 2002), 

isocyanate (Liu, de Wijn et al. 1998), and Sr (Wong, Wong et al. 2009). The grafting-based 

polymerization of L-lactide with stannous octanoate catalyst was introduced to modify HA 

surfaces with PLLA (Hong, Qiu et al. 2004, Qiu, Hong et al. 2005). 
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Figure 6. Bioceramics for biomedical application 
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1.4. Grafting as a means of surface modification 

 

Surface modification is one of the efficient techniques that can assign novel functionality or 

reactivity to materials. For polymer composites, surface modification of fillers improves the 

interfacial adhesion with polymer matrix, which leads to enhanced properties. Surface grafting 

method is one of the chemical surface modification methods and classified into several 

categories in Figure 7. Compared with physical modification methods such as coating and 

deposition, the covalent linkages of polymer chains are formed on the surface of materials. 

Grafting methods can be divided into three classes; grafting-to, grafting-from, and grafting-

through. Grafting-to method is the coupling reaction between surface functional groups of the 

materials and preformed polymer chains carrying reactive end-functional groups. This method 

requires existing reactive groups or generation of new reactive sites by other surface treatments. 

For graft copolymers, free-radical polymerization, anionic polymerization, and atom-transfer 

radical polymerization (ATRP) are commonly used. Grafting-from method is the graft 

polymerization from the reactive initiating functionality of the materials. The initiating sites 

can be incorporated by copolymerization, additional chemical reactions, or can already exist 

on the surface of the materials. This method can be classified as chemical, radiation, 

photochemical, and plasma-induced according to the different methods used for the generation 

of reactive groups (Xu, Huang et al. 2009). Free-radical polymerization, anionic 

polymerization, and atom-transfer radical polymerization (ATRP) are also commonly used for 

grafting-from method. Grafting-through, also known as macromonomer method, is the 

copolymerization using well-defined acrylate-functionalized macromonomers and initiators. 

It is known as the one of the simplest ways to synthesize well-defined graft copolymers. In 

this method, the reactivity ratio of the end-functional groups on the macromonomers to the 

monomers controls the formation of heterogeneous or homogeneous branches (Ito, Tsuchida 

et al. 1985). Appropriate grafting method can lead to surface modification of fillers for polymer 

composites. 
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(https://www.cmu.edu) 

 

Figure 7. Classification of grafting methods 
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2. Literature reviews 

 

2.1. Surface modification of hydroxyapatite with graft polymers 

 

  Aissa, Debbabi et al. (2007) investigated the reaction between phenyl phosphonic 

dichloride and synthetic calcium hydroxy- and fluorapatite. The evidence of grafted mono- or 

polymeric phenyl phosphonic groups to hydroxyapatite was confirmed using FTIR and solid-

state 31P NMR spectroscopy, which contained phosphate groups of hydroxyapatite and grafted 

phenyl phosphonic groups, respectively. After grafting reaction, powder XRD analysis showed 

preserved apatitic structures of HA. This analysis could be utilized for me to prove the grafted 

materials consisting of HA. In contrast, fluorapatite showed no reaction with phenyl 

phosphonic groups. They proposed the reaction mechanism between phenyl phosphonic 

dichloride reagent and hydrogen phophate ion and hydroxide of HA.. (Aissa, Debbabi et al. 

2007)  

Liu, de Wijn et al. (1998) introduced the surface modification method of nanoscale 

hydroxyapatite using hexamethylene diisocyanate as a coupling agent. They proved that 

hydroxyl groups at the surface of nano-apatite have reactivity towards organic functional 

groups. Polyethylene glycol chains grafted onto the surface of HA were characterized using 

FTIR and solid-state 1H MAS NMR spectroscopy; FTIR spectra showed the formation of 

urethane and ether linkages on the surface of HA and solid-state 1H NMR spectra showed the 

reduction of the amount of hydroxyl groups. The weight percentage of grafted polymer was 

determined using total organic carbon analysis (TOC) and TGA. Their results indicate the 

chemical reactivity towards isocyanate groups and how to calculate the amount of grafted 

polymers in weight. (Liu, de Wijn et al. 1998) 

 

Hong, Qiu et al. (2004) attempted the grafting ring-opening polymerization of L-lactide 

onto the surface of hydroxyapatite nanoparticles. PLLA was directly grafted onto HA surface 

through a chemical linkage and PLLA-g-HA particles were stably dispersed in organic 

solvents. PLLA-g-HA particles showed downfield displacement in 31P MAS NMR spectra 

compared with that of pure HA. Phosphate groups of HA did not participate in the reaction but 

it seemed that surface grafting affected the chemical environment. This indicates 31P MAS 

NMR could be one of useful methods to figure out the grafting reaction. FTIR spectra 
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confirmed the existence of surface-grafted PLLA. The amount of grafted polymer was 

determined using TGA. PLLA/PLLA-g-HA composites displayed increasing tensile strength 

and elongation at break. (Hong, Qiu et al. 2004) 

 

Qiu, Hong et al. (2005) developed the novel surface modification of hydroxyapatite 

nanoparticles by surface grafting reaction of L-lactic acid and ring-opening polymerization of 

L-lactide with a stannous octanoate catalyst. They obtained HA modified by L-lactic acid and 

PLLA-grafted HA. The modified surface of HA was analyzed using FTIR, 31P MAS NMR 

spectroscopy and TGA. The results showed that HA reacts easily with L-lactic acid and 

successful graft polymerization of L-lactic acid was initiated by hydroxyl groups of grafted L-

lactic acid. The grafting amount was calculated using TGA. They also prepared modified 

HA/PLLA composites, which displayed enhanced mechanical properties and uniform 

microstructures. (Qiu, Hong et al. 2005) 

 

Wang, Dai et al. (2010) prepared the scaffolds consisting of hydroxyapatite or poly(ε-

caprolactone)-grafted HA and poly(ε-caprolactone) (PCL) by using the thermally induced 

phase separation/salt leaching technique. PCL-grafted HA particles were evaluated using FTIR 

and TGA as the same way mentioned above. Grafting reaction on the surface of HA was also 

confirmed using powder XRD patterns. Through the introduction of grafted HA particles, 

mechanical strength, porosity and thermal property were modified. Especially, the 

compressive modulus of composite scaffold was highly enhanced. (Wang, Dai et al. 2010) 
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2.2. Preparation and characterization of PLA/HA biocomposites 

 

Hong, Zhang et al. (2005) examined to prepare the PLLA-grafted HA/PLLA composites to 

improve the bonding between HA and PLLA, which leads to a increase of mechanical 

properties. Thermal properties were investigated using DSC and the structure of the 

composites was studied using SEM, polarized optical microscopy (POM) and cell culture. 

PLLA chains grafted on the HA surface improved the interfacial adhesion between polymer 

matrix and particles. PLLA-grafted HA had a role of toughening effect of composites, which 

exhibited remarkably increasing mechanical properties such as the elastic modulus. (Hong, 

Zhang et al. 2005) 

Jose, Thomas et al. (2009) synthesized aligned nanofibrous scaffolds consisting of PLGA 

and HA nanoparticles by electrospinning for bone tissue engineering. Through the 

morphological characterization, average fiber diameter was controlled according to the 

amounts of HA nanoparticles. There were no agglomerates at low HA content, which means 

good dispersion. However, excessive HA content resulted in broken fibers due to 

agglomeration. This indicates the importance of dispersion when it comes to composites. From 

DSC results, it is found that well-dispersed HA particles are involved in the chain mobility. 

The viscoelastic properties and degradation characteristics of the scaffolds were also 

investigated. A suitable amount of HA made the composites less degradable and had higher 

modulus. (Jose, Thomas et al. 2009) 

 

Xiao, Li et al. (2007) introduced the surface modification of PLA with poly(α-methacrylic 

acid) (PMAA) via photo-oxidation and UV-induced polymerization in order to control the 

growth of HA crystals and improve the interfacial interaction between two phases. It was 

confirmed that PMAA polymer chains were grafted onto the PLA surface and grafting rate 

increased with reaction time by using FTIR spectroscopy. The composites were synthesized 

by blending PMAA-modified PLA and HA nanoparticles. Though powder XRD and SEM 

observation, PMAA-modified PLA could manipulate the morphology as well as the nucleation 

and growth of HA crystals and affect the dispersion of fillers. (Xiao, Li et al. 2007) 

 

Li, Lu et al. (2008) attempted the surface modification of HA particles by ring-opening 

polymerization of lactide. The surface modification was characterized chemically and 

quantitatively using FTIR and TGA, respectively. These analyses confirmed the graft 
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polymerization of lactide onto the surface of HA. Measuring mechanical properties of PLA-

grafted HA/PLA composites, they found that the introduction of surface modification of HA 

enhanced the adhesion between HA particle and PLA matrix and modified HA particles were 

more well-dispersed in PLA matrix. (Li, Lu et al. 2008) 
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2.3. Preparation and characterization of PLGA/HA biocomposites 

 

Petricca, Marra et al. (2006) synthesized PLGA/HA composites by a colloidal non-aqueous 

chemical precipitation technique in the presence of the solubilized polymer. The 

microstructure of the scaffold indicates a homogenous distribution of HA particles in the PLGA 

polymer matrix. Bonding characteristics between HA and PLGA, the microstructure, tensile 

strength, and thermal stability of the composites were investigated. It showed suitable 

mechanical properties as bone substitution scaffolds. In vitro studies were conducted for 

osteoblast-like adhesion assessment on composites utilizing MG63 cells. The incorporation of 

the sufficient amount of HA could maximize the osteoconductivity of the composites. (Petricca, 

Marra et al. 2006) 

Cui, Liu et al. (2009) investigated the surface modification of nanohydroxyapatite with L-

lactic acid oligomers. HA/PLGA nanocomposites with different HA contents were fabricated 

into the scaffolds by the melt-molding and particulate leaching methods. L-lactic acid 

oligomers were grafted onto the surface of nanohydroxyapatite. HA particles could disperse 

uniformly and have the interconnected pore structures. HA/PLGA composites exhibited good 

biocompatibility, homogeneity and mechanical properties. Through the animal test, it was 

confirmed that cell attachment and proliferation, and osteogenetic ability of composites were 

influenced by HA content. They optimized the composite as the bone repairing materials for 

tissue engineering and orthopedic application even with histological analysis. (Cui, Liu et al. 

2009) 

Zhang, Hong et al. (2009) fabricated a three-dimensional porous scaffold with the 

composite of PLGA and PLLA-grafted HA nanoparticles, using the solvent casting and 

particulate leaching method. This paper is interesting in that graft polymer is PLLA but 

polymer matrix consists of PLGA. After surface modification, PLLA-grafted HA particles 

were more uniformly dispersed and showed a lower calcium exposure on the composite 

surface. The intramuscular implant study showed that PLLA-grafted HA/PLGA scaffold was 

more stable than that of HA/PLGA and similar postoperative biodegradability and 

mineralization to HA/PLGA up to the HA content. For repairing critical radius defects, PLLA-

grafted HA/PLGA scaffold exhibited rapid and strong osteoconductivity. The incorporation of 

bone morphogenetic protein 2 (BMP-2) to the composite implant could enhance the osteogenic 

process. It is concluded that PLLA-grafted HA/PLGA implant could play a role to guide the 

new bone formation with the intact adjacent structure. (Zhang, Hong et al. 2009) 
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Song, Ling et al. (2013) prepared the composites of PLLA-grafted HA particles and PLGA 

by electrospinning as the materials for new biodegradable guided bone regeneration (GBR) 

membranes. The composite fiber membranes were investigated at length including mechanical 

properties, wettability, degradation, bioactivity, and biocompatibility. PLLA-grafted 

HA/PLGA composites showed enhanced mechanical strength with appropriate PLLA-grafted 

HA content while excessive filler content led to the deterioration of properties due to the 

agglomeration of fillers. Wettability, degradation, and bioactivity also depended upon PLLA-

grafted HA content. To assess the biocompatibility of the composite fiber membranes, the cell 

attachment test was conducted and it resulted that the osteoblasts adhered well and spread 

rapidly than the control. These results suggested that the bioresorbable PLLA-g-HA/PLGA 

composite fiber membranes could be utilized for GBR therapy. (Song, Ling et al. 2013) 
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3. Objectives 

 

3.1. Enhancing the interfacial adhesion between polymer and fillers 

 

Hydroxyapatite is one of the inorganic materials but PLGA consists of organic carbon-based 

polymer chains. The biocomposite of PLGA and HA was introduced to utilize both 

biodegradability of PLGA and biocompatibility of HA. For impeccable biocomposite, PLGA 

and HA should be well blended and tightly combined. However, just blending two different 

materials without chemical linkage formation shows little compatibility. PLGA polymer 

matrix and HA particles are separated and there are fatal cracks between their interfaces. 

Therefore, surface modification of HA will be introduced by PLGA-grafting reaction to 

increase their compatibility. PLGA polymer chains would be chemically grafted on the surface 

of HA, which have the role to entangle with polymer matrix and compatibilize HA particles in 

the matrix through van der Vaals force and hydrogen bonding. This indicates the improvement 

of the interfacial adhesion between polymer matrix and inorganic fillers for polymer 

composites. The grafting reaction will be confirmed using FTIR and solid-state NMR 

spectroscopy. The grafted weight fraction will be analyzed using TGA and molecular weight 

change of polymer chains will be indirectly checked using GPC. SEM observation and XRD 

analysis will be conducted to examine morphological characteristics after grafting. 
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3.2. Improving thermal, mechanical and viscoelastic properties of 

 biocomposites 

 

  Surface modification of HA particles by grafting PLGA polymer chains increases 

entanglement with PLGA polymer matrix. The enhanced interfacial adhesion between PLGA 

and PLGA-grafted HA strengthens the entire biocomposites, which leads to improvement of 

thermal, mechanical and viscoelastic properties; The introduction of thermally stable inorganic 

fillers and tight entanglement via surface modification impedes the thermal degradation and 

makes the biocomposites more thermoresistant. Chemically bonded PLGA polymer chains 

entangle throughout the biocomposites and hold them tight, which causes the enhanced 

mechanical properties such as tensile strength, flexural strength and impact strength with any 

external loads. Similarly, lengthy polymer chains and well-woven entanglement induce the 

viscoelastic performance such as modulus and damping. Therefore, thermal, mechanical and 

viscoelastic properties will be investigated respectively for prepared biocomposites; Transition 

temperatures such as glass transition temperature will be measured using DSC. Tensile strength, 

elongation and elastic modulus will be measured using UTM. Storage modulus, loss modulus 

and damping factor will be measured using DMA. 
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3.3. Manufacturing biocomposites with different preparation methods 

 

For polymer composites, the interfacial adhesion is one of the most important factors to 

affect their properties. Because surface modification of HA is introduced to enhance the 

interfacial adhesion between PLGA polymer matrix and HA particles, it is necessary to 

evaluate performance improvement of surface grafting reaction. In this study, specimens will 

be prepared by injection molding with and without surface modification; PLGA/HA composite 

and PLGA/PLGA-g-HA composite. Meanwhile, the dispersion of fillers is one of the most 

important factors to affect their properties as well as the interfacial adhesion. PLGA/PLGA-g-

HA composites will be classified according to three different blending methods before 

injection molding; the extrusion molding using a twin-screw compounding extruder, simple 

blending of milled PLGA and PLGA-g-HA powders, and the re-dispersion of PLGA-g-HA 

powders into PLGA matrix using a solvent. Specimens will also be prepared using injection 

molding after each blending method. Comparing thermal, mechanical and viscoelastic 

properties of biocomposites by above-mentioned measurements, the influence of dispersion 

for biocomposites will be examined. 
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1. Experimental 

 

1.1. Materials 

 

PLGA (L-lactide:glycolide = 82:18) was produced by Corbion Purac (Netherlands). It has 

an inherent viscosity of 1.8 dL g−1 in chloroform, a maximum degradation time of 6 months, 

and a melting range of 127.5 to 141.4 °C. The number-average molecular weight (Mn) of 

PLGA is ~130,000. HA was purchased from Sigma-Aldrich and used as filler. Basic properties 

of PLGA and HA are presented in Table 1 and 2, respectively. Chloroform (99.8% purity) was 

purchased from Samchun Pure Chemical (Republic of Korea) and used as a solvent. 

  



24 

 

Form  Amorphous  

Feed ratio  Lactide : Glycolide = 82 : 18  

Molecular weight  Mw 220,000-250,000  

Degradation 

timeframe  
＜6 months  

Viscosity  0.55-0.75 dL/g, 0.1 % (w/v) in chloroform (25 °C)  

Transition temp  Tg 45-50 °C  

Solubility  ethyl acetate, chloroform, acetone and THF: soluble  

Storage temp  2-8°C  

 

Table 1. Basic properties of PLGA used in this study 
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Abbreviation  HAp, HA  

Category  Phosphate mineral apatite group  

Repeating Unit  Ca5(PO4)3(OH)  

Molecular Weight  1004.6 g/mol  

Crystal System  Hexagonal  

 

Table 2. Basic properties of HA used in this study 
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1.2. Grafting reaction of PLGA on the surface of HA 

 

In a 100-mL vial, PLGA was dissolved in chloroform by magnetic stirrer with stirring rate 

of 800 rpm at 50 °C for 6 h. After the PLGA pellets were dissolved, HA was added and the 

mixture was blended by magnetic stirrer with stirring rate of 600 rpm at 50 °C for 6 h. The 

ratios of PLGA:HA mixture were 10:90, 20:80, 30:70, and 50:50. To obtain a uniform 

dispersion of HA with the polymer chains, the PLGA/HA suspension was sonicated using 

POWERSONIC 410 (40 kHz, Hwashin Instrument Co., Ltd., Republic of Korea) at room 

temperature (25 °C, RT) for 3 h and poured into an Al dish. After drying at 50 °C for 6 h to 

remove the chloroform, the Al dish was placed in a high-temperature oven at 200 °C to react 

HA and PLGA. The reaction time was 3, 5, 10, 30, 60, and 120 min. The reacted mixture was 

transferred to a conical tube, dispersed in chloroform by sonication at RT for 3 h, and then 

separated into the first supernatant and sediment by centrifuging at 3,000 rpm for 10 min. The 

first supernatant was moved to a separate vial and the first sediment was re-dispersed in 

chloroform by sonication at RT for 3 h before separation into the second supernatant and 

sediment by centrifugation at 3,000 rpm for 10 min to completely remove non-grafted PLGA 

polymer chains. The vial containing the first supernatant and the conical tube containing the 

second sediment were dried at 50 °C for 24 h to remove residual chloroform. After drying, the 

supernatant was weighed to create a solution of equal concentration for GPC molecular weight 

measurement. After centrifuging and drying, the sediment was referred to as PLGA-grafted 

HA. 
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1.3. Characterization of the PLGA-g-HA particles 

 

1.3.1. TGA 

 

Thermogravimetric analysis was performed using a TGA 4000 (PerkinElmer, USA) to 

determine the occurrence of grafting and measure the weight of PLGA grafted onto the HA 

surface qualitatively. Samples weighing 15 to 20 mg were loaded in the chamber with 20.0-

mL/min N2 used as the purge gas. After holding for 1 min at 30 °C, temperature scanning from 

30 to 700 °C proceeded at the heating rate of 10 °C/min. The TGA furnace was then cooled by 

a water-circulating device. The grafted weight fraction was calculated using the following 

equation: 

GWF (%) = 𝑊R,HA (%) − 𝑊R,g−HA (%) 

where WR, HA is the residue weight percentage of HA and WR, g-HA is the residue weight 

percentage of PLGA-grafted HA. The residue weight percentages were determined by TGA. 
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1.3.2. GPC measurements 

 

The oven-dried supernatant was dissolved in tetrahydrofuran (THF) and sonicated at RT 

for 30 min to create a 1.5-wt% solution. The molecular weights were measured using a YL9100 

GPC System (YoungLin Instruments, Republic of Korea) equipped with a YL9170 refractive 

index (RI) detector. GPC columns were eluted with 35 °C THF as an eluent solvent at a flow 

rate of 1 mL/min. The number-average (Mn) and weight-average (Mw) molecular weights were 

calculated using a calibration curve from polystyrene standards. 
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1.3.3. FTIR spectroscopy 

 

Infrared (IR) spectra were obtained using an FT/IR-6100 (JASCO, Japan) equipped with a 

Mylar beam splitter and an attenuated total reflectance (ATR) accessory composed of a 

diamond crystal with a 45° angle of incidence. Spectra were collected from 4000 to 400 cm−1 

32 times at the resolution of 4 cm−1. The grafting reaction of PLGA was characterized by 

monitoring the changes in the C=O bond peak at ~1735–1750 cm−1. All spectra were corrected 

through CO2 reduction, H2O reduction, noise elimination, and baseline correction. 
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1.3.4. Solid-state NMR spectroscopy 

 

Solid-state 1H NMR spectra were obtained through a 500-MHz solid NMR system using a 

BRUKER AVANCE II 500 spectrometer (BRUKER, Germany) with cross-polarization (CP) 

and the magic-angle spinning (MAS) technique. The spectrometer was operated at the Larmor 

frequency of 500.13 MHz in a 4-mm CP/MAS probe head. The spinning frequency of MAS 

was 10 kHz and the 90° pulse length was 3.3 µs; 32 scans were recorded with a recycle delay 

of 3 s. For solid-state 31P NMR spectra, the spectrometer was operated at the Larmor frequency 

of 202.45 MHz in a 4-mm CP/MAS probe head. The spinning frequency of MAS was 10 kHz 

and the 90° pulse length was 2.0 µs; 256 scans were recorded with a recycle delay of 1 s. 
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1.3.5. SEM observation 

 

SEM imaging was conducted using a SUPRA 55VP FESEM (Carl Zeiss, Germany) to 

characterize the morphology of PLGA-grafted HA particles. After oven-drying at 50 °C for 24 

h, the particles were fixed with C tape on a Cu-based stub and coated with a thin layer of Pt at 

a sputter current of 30 mA for 140 s. The microscopy was performed at an accelerating voltage 

of 2 kV and working distance of 3.6 mm. 

  



32 

 

1.3.6. XRD spectroscopy 

 

XRD patterns were obtained using an Ultima III Powder X-Ray Diffractometer (Rigaku, 

Japan) to determine the crystalline structures of the PLGA-grafted HA powders. The powders 

were well compressed on the sample holder. The diffractometer used Cu Kα radiation (λ = 

1.54 Å ) at 40 kV and 30 mA from a fixed graphite monochromator. The Bragg angle (2θ) 

range was scanned from 2° to 60° at a rate of 2°/min with a step size of 0.02°. The crystallite 

sizes (D) of HA and PLGA-g-HA powders were determined using the diffraction peak of (002) 

planes and Scherrer’s equation: 

𝐷 =  𝐾𝜆 𝛽cos𝜃⁄  

where D is the average crystallite size, β is the full width of the peak at half of the maximum 

intensity (FWHM, in radians), λ is the irradiation wavelength (1.540562Å ), and K is a constant 

related to the crystallite shape, here approximated as unity. 

The crystalline fractions (Xc) of the HA and PLGA-grafted HA powders were determined 

using the following equation: 

𝑋c = (𝐾A 𝛽⁄ )3 

where 𝛽 is the FWHM (in degrees) of the peak and 𝐾A is a constant set at 0.24. 
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2. Results and Discussion 

 

2.1. Thermogravimetry 

 

TGA isothermal tests were conducted to confirm the thermal stability of PLGA and HA as 

shown in Figure 8. The tests were carried out at 200 °C for 1 h. HA had no weight loss and 

PLGA also had few (0.3%) weight loss, which indicates PLGA and HA are thermally stable 

enough not to affect calculating the grafted weight fractions (GWFs) of PLGA-grafted HA 

powders. 

 

TGA thermograms of PLGA-grafted HA with different ratios are presented in Figure 9: (a) 

PLGA:HA = 10:90, (b) PLGA:HA = 20:80, (c) PLGA:HA = 30:70, and (d) PLGA:HA = 50:50. 

The final weights at ~700 °C decreased with increasing reaction time, which means HA reacted 

more with PLGA polymer chains. The final weights also decreased with increasing HA ratios. 

The higher HA ratio is, the more decomposition of PLGA grafted onto the HA surface occurs 

during the TGA test. The tendency of grafted weight fractions is summarized in Figure 10. As 

shown in Figure 10(a), the GWFs generally increased with increasing reaction time, which 

indicates the grafting reaction occurred more and more PLGA polymer chains grafted to the 

surface of HA. Meanwhile, when the ratios of PLGA:HA are 20:80, 30:70 and 50:50, the 

GWFs are converging to the one point. The GWFs show different tendency with different 

PLGA ratios in Figure 10(b), which means PLGA:HA ratio is one of the important factor to 

decide the grafted weight fractions. In case of the ratio of PLGA:HA is 50:50, the initial GWF 

is lower than that of the ratio of 30:70 and the GWF gradually increases. This slow initial 

grafting is attributed to relatively low amounts of HA compared to other cases. The scheme of 

grafting reaction was presented in terms of grafted weight fraction in Figure 11. When the 

reaction time increases, it is expected that grafting ratio increases and grafted chain length 

decreases. The combination with grafting ratio and grafted chain length determines the GWF 

value. The condition with the ratio of 30:70 and the reaction time of 30 min shows the 

maximum GWF value, which is the optimal condition to be referred to as “PLGA-g-HA”. 

 

TGA and DTG thermograms of neat PLGA, non-grafted HA, and PLGA-g-HA powders are 

presented in Figure 12 and Figure 13, respectively, with the results summarized in Table 3. T5%, 
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T10%, and T50% are the temperatures at which the weight losses are 5, 10, and 50 wt%, 

respectively. Td is the thermal decomposition temperature and Tmax is the temperature at the 

maximum rate of weight loss. WR is the residual weight ratio after TGA measurement. As 

shown in Figure 12, non-grafted HA displays a total weight loss of ~4%, occurring in two steps 

within temperature ranges of 30 to 140 °C and 430 to 480 °C. The first stage is attributed to 

the evaporation of surface-adsorbed water; the second stage to the loss of bound water in the 

crystalline lattice (Ashok, Sundaram et al. 2003). Meanwhile, PLGA shows the onset of 

thermal decomposition at ~300 °C and ~100% weight loss at 700 °C as an organic polymer. 

Similarly, PLGA-g-HA shows onset of thermal decomposition at ~300 °C, indicating that the 

PLGA polymer chains grafted on the HA surface begin to decompose. According to previous 

studies on the surface modification of HA with PLA, high GWF values typically require long 

surface modification times. For example, the maximum GWF is ~6 wt% when L-lactide and 

HA are reacted for 18 h with a catalyst (Hong, Qiu et al. 2004) and ~21.6 wt% when PLA and 

HA are reacted with a catalyst (Qiu, Hong et al. 2005). Even though PLGA and HA are reacted 

for only 30 min with no catalyst here, however, the calculated GWF reaches 10.032 wt%. 

Therefore, surface grafting is confirmed quantitatively by the GWF value. As shown in Figure 

13 and Table 3, PLGA-g-HA has lower Td and Tmax values than neat PLGA. The decrease of 

Td arises from the decrease of the molecular weight (Palacio, Orozco et al. 2011), suggesting 

that surface grafting on HA causes PLGA chain length decreases. Because HA is highly 

thermally stable, PLGA-g-HA has higher T5% and T10% values compared to neat PLGA; 

however, the chain-shortening effect of HA affects the thermal and mechanical properties of 

the composites, as discussed later in Chapter 3. 
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Figure 8. TGA isothermal test at 200 °C for 1 h: 

 (a) TGA isothermal test of HA 

 (b) TGA isothermal test of PLGA 

(a) 

(b) 



36 

 

100 200 300 400 500 600 700

85

90

95

100

W
e
ig

h
t 

(%
)

Temperature (
o
C)

Reaction time (min)

 3

 5

 10

 30

 60

 120

 

 

 

 

 

100 200 300 400 500 600 700

85

90

95

100

Reaction time (min)

 3

 5

 10

 30

 60

 120

W
e
ig

h
t 

(%
)

Temperature (
o
C)

 

 

 

 

 

(a) 

(b) 



37 

 

100 200 300 400 500 600 700

85

90

95

100

Reaction time (min)

 3

 5

 10

 30

 60

 120

W
e
ig

h
t 

(%
)

Temperature (
o
C)

 

 

 

 

 

100 200 300 400 500 600 700

85

90

95

100

Reaction time (min)

 3

 5

 10

 30

 60

 120

W
e
ig

h
t 

(%
)

Temperature (
o
C)

 

 

 

 

 
 

Figure 9. TGA thermograms of PLGA-grafted HA with different ratios: 

 (a) PLGA:HA = 10:90 

        (b) PLGA:HA = 20:80 

        (c) PLGA:HA = 30:70 

        (d) PLGA:HA = 50:50 
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Figure 10. Tendency of grafted weight fractions: 

  (a) Grafted weight fractions as a function of reaction time 

         (b) Grafted weight fractions as a function of PLGA ratio 

  

(a) 

(b) 
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Figure 11. Scheme of grafting reaction in terms of grafted weight fraction 
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Figure 12. TGA thermograms of neat PLGA, non-grafted HA, and PLGA-g-HA powders 
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Figure 13. DTG thermograms of neat PLGA, non-grafted HA, and PLGA-g-HA powders 
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Table 3. Thermogravimetry of neat PLGA, non-grafted HA and PLGA-g-HA powders 

 T5% (°C) T10% (°C) T50% (°C) Td (°C) Tmax (°C) 
WR 

(wt%) 

PLGA 311.60 327.57 360.31 338.77 368.52  0.229 

non-grafted HA - - - - - 96.272 

PLGA-g-HA 317.32 341.94 - 297.14 333.15 86.240 
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2.2. Molecular weight distributions 

 

The molecular weight was measured by GPC to determine the sizes of the PLGA polymer 

chains that were successfully grafted. To determine the molecular weight and polydispersity 

index (PDI) of the PLGA grafted on the HA surface, the first supernatant was indirectly 

measured (Hong, Qiu et al. 2004, Qiu, Hong et al. 2005). The molecular weights and PDI 

values of neat PLGA as a function of reaction time are presented in Figure 14. When the neat 

PLGA was thermally treated at 200 °C even without HA, Thermal decomposition of PLGA 

polymer chains causes decrease of the molecular weights of neat PLGA. This means thermal 

treatment could reduce the polymer chain length of PLGA. The PDI values increase above 2.5 

because of the random occurrence of various lengths of decomposed polymer chains. It is 

possible to confirm the effect of reaction with HA by comparing the molecular weights with 

and without HA. 

 

The molecular weight distributions of PLGA-grafted with different ratios are presented in 

Figure 15: (a) PLGA:HA = 10:90, (b) PLGA:HA = 20:80, (c) PLGA:HA = 30:70, and (d) 

PLGA:HA = 50:50. The medium values of log M (red line) shifted to the right with increasing 

HA ratios. Higher HA ratio causes more grafting reaction of PLGA in the TGA result, at the 

same time, longer grafted PLGA polymer chains. The tendency of molecular weights is 

summarized in Figure 16. As shown in Figure 16(a), the molecular weights generally decreased 

with increasing reaction time, which indicates the grafting reaction gradually involved the 

fragmentation of polymer chains. The molecular weights are linearly proportional to PLGA 

ratios in Figure 16(b). In case of the ratio of 10:90, quick reaction and fragmentation caused 

rapid decreases of the molecular weights. In case of the ratio of 50:50, relatively slow reaction 

and fragmentation occurred. This difference of reactivity is subject to the frequency in 

accordance with adjacent HA ratio. The scheme of grafting reaction was presented in terms of 

molecular weight in Figure 17. When the reaction time increases, the grafting reaction 

accompanies the fragmentation of PLGA and the reduction of total polymer chain length. This 

length decrease of adjacent chains leads to probabilistic length decrease of grafted chains. 

 

Meanwhile, the optimal condition was referred to as “PLGA-g-HA” from TGA results. The 

molecular weight distributions of neat PLGA and the first supernatant of PLGA-g-HA are 

presented in Figure 18, with molecular weights summarized in Table 4. The molecular weight 
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distribution of the first supernatant contains several broad peaks, while that of PLGA has only 

one peak. The three regions in the PLGA-g-HA distribution indicate that the transesterification 

between PLGA and HA split the PLGA polymer chains. Polymer chains with Mn values of 

~103–104 are formed by reactions occurring at the middle sections of the chains; those with Mn 

values below 103 and above 104 are formed by reactions at the termini of the chains. Peak (1) 

has a very high PDI value, indicating that the PLGA polymer chains have highly varied 

molecular weights after the surface grafting reaction. The GPC data indirectly confirms that 

the reaction with HA causes decreases in the molecular weights of PLGA and that the 

transesterification shortened the PLGA polymer chains grafted to the HA surface. 
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Figure 14. Molecular weights and polydispersity indices of neat PLGA as a function of 

         reaction time 
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Figure 15. Molecular weight distributions of PLGA-grafted HA with different ratios: 

  (a) PLGA:HA = 10:90 

         (b) PLGA:HA = 20:80 

         (c) PLGA:HA = 30:70 

         (d) PLGA:HA = 50:50  

(c) 

(d) 



48 

 

0 20 40 60 80 100 120

0

40k

80k

120k

160k

240k
M

o
le

c
u

la
r 

W
e
ig

h
t 

(g
/m

o
l)

Reaction Time (min)

PLGA:HA

 10:90

 20:80

 30:70

 50:50

PLGA = 235.5k

 

10 20 30 40 50

0

40k

80k

120k

160k

240k

M
o

le
c
u

la
r 

W
e
ig

h
t 

(g
/m

o
l)

PLGA Ratio (%)

Reaction time (min)

 3

 5

 10

 30

 60

 120

PLGA = 235.5k

 

Figure 16. Tendency of molecular weights: 

  (a) Molecular weights as a function of reaction time 

         (b) Molecular weights as a function of PLGA ratio 
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Figure 17. Scheme of grafting reaction in terms of molecular weight 
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Figure 18. Molecular weight distributions of neat PLGA and 1st supernatant of PLGA-g-HA 

  



51 

 

Table 4. Molecular weights of neat PLGA and 1st supernatant of PLGA-g-HA 

 Peak No. Mn (g/mol) Mw (g/mol) PDI 

PLGA  129,992 235,511 1.812 

 (1)  37,477  96,622 2.578 

PLGA-g-HA (2)   1,859   2,753 1.481 

 (3)    ,466    ,496 1.063 

 

  



52 

 

2.3. FTIR spectra 

 

The FTIR spectra of PLGA-grafted HA with different reaction time are presented in Figure 

19. When the reaction time increases, new peaks are gradually formed and their heights also 

increase (red square). From the enlargement of the spectra near 1720 cm−1 in Figure 19(b), the 

peak change occurred obviously. Through IR absorptions of common functional groups in 

Table 5, the bands near 1720 cm−1 are related to C=O bonds. It is confirmed that the grafting 

reaction between PLGA and HA leads to the formation of C=O linkages. 

 

For the detailed analysis, the FTIR spectra of non-grafted HA, neat PLGA, and PLGA-g-

HA are presented in Figure 20. The absorbance bands at 471, 566, 605, 963, 1031, and 1096 

cm−1 originate from phosphate groups in the crystalline structure of HA and specifically from 

ν2 PO4
3− bending, ν4 PO4

3− bending, ν4 PO4
3− bending, ν1 PO4

3− stretching, ν3 PO4
3− bending, 

and ν3 PO4
3− bending vibrations, respectively (Chlopek, Morawska-Chochol et al. 2009, 

Reyes-Gasga, Martínez-Piñeiro et al. 2013). PLGA displays a large sharp absorbance band of 

carbonyl groups at 1750 cm−1 and a strong band of aliphatic C–H stretching vibrations between 

3000 and 2850 cm−1. In addition, distinct bands appear from asymmetric and symmetric C–O 

stretching vibrations between 1300 and 1150 cm−1, CH2 stretching (deformation) vibrations 

between 1500 and 1250 cm−1, and H bonding between 3600 and 3200 cm−1. Meanwhile, 

PLGA-g-HA shows the same peaks assigned to the bending vibrations of phosphate groups. 

These confirm that PLGA-g-HA contains HA, because these peaks in the PLGA-g-HA 

spectrum are characteristic of HA. However, two new peaks appear at 1750 and 1183 cm−1 for 

PLGA-g-HA, unlike those for non-grafted HA. As described in Figure 21, grafting of PLGA 

on HA occurs by esterification; that is, new ester groups are formed on the HA surface. These 

new absorbance bands arise from carbonyl groups and C–O bonding of PLGA in PLGA-g-

HA, respectively. Furthermore, the peaks at 1747 and 1182 cm−1 in the PLGA spectrum are 

shifted to higher wavenumbers of 1750 and 1183 cm−1, respectively, in the PLGA-g-HA 

spectrum. This shift is attributed to the decreased amount of H bonding between PLGA 

polymer chains from the decreased chain length and substitution that accompanies surface 

grafting on HA. The occurrence of the two new peaks and peak shifts confirm that the PLGA 

polymer chains are successfully grafted on the HA surface.  
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Table 5. IR absorptions of common functional groups 

Functional Group Absorption Location (cm-1)  Absorption Intensity  

Alkane (C-H)  2850 – 2975  Medium to strong  

Alcohol (O-H)  3400 – 3700  Strong, broad  

Alkene  
Internal (C=C)  1640 – 1680  Weak to medium  

Terminal (C=C-H)  3020 – 3100  Medium  

Alkyne  
Internal (C≡C)  2100 – 2250  Medium  

Terminal (C≡C-H)  3300  Strong  

Nitrile (C≡N)  2200 – 2250  Medium  

Aromatics  1650 – 2000  Weak  

Amines (N-H)  3300 – 3350  Medium  

Carbonyls 
(C=O)  

Aldehyde (CHO)  1720 – 1740  Strong  

Ketone (RCOR)  1715  Strong  

Ester (RCOOR)  1735 – 1750  Strong  

Acid (RCOOH)  1700 - 1725  Strong  
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Figure 19. FTIR spectra of PLGA-grafted HA (30:70) with different reaction time: 

         (a) FTIR spectra change with different reaction time 

         (b) Enlargement of FTIR spectra near 1720 cm−1 (C=O bond) 

  

(a) 

(b) 
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Figure 20. FTIR spectra of neat PLGA, non-grafted HA, and PLGA-g-HA powders 
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Figure 21. Scheme of grafting reaction of PLGA on the surface of HA 
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2.4. Solid-state NMR spectra 

 

The 1H NMR spectra for non-grafted HA and PLGA-g-HA are presented in Figure 22, with 

the main peaks of the 1H and 31P NMR measurements summarized in Table 6. The 1H NMR 

spectrum of HA shows four highly intense peaks at 16.08, 13.40, 5.23, and −0.10 ppm. The 

peak at −0.10 ppm is assigned to protons in the structural hydroxyl groups of HA; that at 5.23 

ppm is assigned to protons of water molecules adsorbed on the surface of HA (Yesinowski and 

Eckert 1987, Panda, Hsieh et al. 2003, Wilson, Awonusi et al. 2006). The relatively small peaks 

at 16.08 and 13.40 ppm are assigned to protons arising from monetite (CaHPO4) in central 

planar defects (Yesinowski and Eckert 1987). After surface grafting, the two most intense 

peaks at 5.23 and −0.10 ppm for HA are decreased in height and shifted to 5.01 and −0.12 ppm 

for PLGA-g-HA, respectively. This indicates that the surface grafting reaction with PLGA 

reduces the amount of protons associated with free structural hydroxyl groups of HA. 

Furthermore, the FWHM of the peak of surface-absorbed water is decreased significantly from 

4.33 ppm for HA to 1.46 ppm for PLGA-g-HA. These changes indicate that grafting changes 

the chemical environment at the HA surface. The decrease in the surface-adsorbed water peak 

height indicates that surface hydroxyl groups act as binding sites for adjacent water molecules, 

and that these binding sites are blocked after grafting with PLGA polymer chains (Liu, de Wijn 

et al. 1998). Meanwhile, the spectrum of PLGA-g-HA has new peaks at 1.29 and 0.90 ppm 

compared to that of HA, suggesting that the new peaks originate from newly formed chemical 

bonds with PLGA. The FWHM values of these peaks are 0.92 and 1.57 ppm, respectively, 

which are rather large despite the low peak intensities; the peaks overlap over a broad range, 

suggesting that protons on the grafted PLGA exist in varied chemical environments because 

of interactions such as H bonding with surface-adsorbed water. The characteristic resonance 

peak at ~13 ppm can be used as a reference to compare with others because its peak intensity 

is unaffected by the surface grafting reaction (Liu, de Wijn et al. 1998, Choi, Lee et al. 2006, 

Lee, Choi et al. 2006). Therefore, the peak height of the structural hydroxyl groups at −0.10 

ppm was adjusted by using the two peaks at 13.40 and 16.08 ppm as references, with peak 

heights calculated from the same zero value on the intensity axis. The calculated rate of peak 

height decrease at −0.10 ppm is 3.125% after surface grafting. This suggests that some H atoms 

are removed from the HA surface and surface hydroxyl groups are grafted to PLGA polymer 

chains. 
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For the 31P NMR spectra as shown in Figure 23, HA and PLGA-g-HA display intense peaks 

at 2.68 and 2.67 ppm, respectively, arising from phosphate groups. The small peaks on the 

right shoulders of these intense peaks are assigned to protonated phosphate groups (Mingalyov, 

Kolyagin et al. 2011). While slight changes in chemical shift and FWHM appear, no distinct 

changes occur after the surface grafting reaction. According to previous studies on the surface 

modification of HA, surface grafting generally causes substantial peak changes, such as 

displacements in chemical shift (Hong, Qiu et al. 2004) or the formation of new peaks (Aissa, 

Debbabi et al. 2007) in the 31P NMR spectrum. However, it seems that the surface grafting 

reaction of PLGA on HA has no significant influence on the chemical environment of the HA 

phosphate groups. Careful observation shows that the phosphate group chemical environment 

does change, as shown by the decreased peak heights for PLGA-g-HA. 
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Figure 22. Solid-state 1H NMR spectra of non-grafted HA and PLGA-g-HA powders 
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Figure 23. Solid-state 31P NMR spectra of non-grafted HA and PLGA-g-HA powders 
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Table 6. 1H and 31P chemical shifts and FWHM of non-grafted HA and PLGA-g-HA 

 1H NMR 31P NMR 

 Assignment 

Chemical 

shift 

(ppm) 

FWHM 

(ppm) 
Assignment 

Chemical 

shift 

(ppm) 

FWHM 

(ppm) 

non-grafted 

HA 
OH− −0.10 0.68 PO4

3− 2.68 1.78 

 
surface 

H2O 
5.23 4.33 HPO3

2− 2.59 7.27 

PLGA-g-HA OH− −0.12 0.72 PO4
3− 2.67 1.78 

 
grafted 

C−H 
0.90 0.92 HPO3

2− 2.49 7.39 

 
grafted 

C−H 
1.29 1.57    

 
surface 

H2O 
5.01 1.46    
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2.5. Microscopic images 

 

SEM micrographs of non-grafted HA and PLGA-grafted HA powders are shown in Figure 

24. As shown in Figure 24(a), the HA powder shows a random distribution of nanometer-scale 

granular particles. Meanwhile, as shown in Figure 24(b) ~ (g), the PLGA-grafted HA powders 

display agglomerated structures of plate-like or rod-like clusters with some granular particles. 

These clusters are <100 nm in thickness. Thus, surface grafting causes morphological changes 

in the particles. 
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Figure 24. SEM micrographs of non-grafted HA and PLGA-grafted HA powders (×100,000): 

         (a) Non-grafted HA 

         (b) PLGA-grafted HA (30:70) reacted for 3 min 

         (c) PLGA-grafted HA (30:70) reacted for 5 min 

         (d) PLGA-grafted HA (30:70) reacted for 10 min 

         (e) PLGA-grafted HA (30:70) reacted for 30 min 

         (f) PLGA-grafted HA (30:70) reacted for 60 min 

         (g) PLGA-grafted HA (30:70) reacted for 120 min 
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2.6. XRD patterns 

 

XRD analysis was performed to determine whether the crystallinity of HA changed after 

surface grafting with PLGA. The XRD patterns with different reaction time are shown in 

Figure 25(a). PLGA-grafted HA powders display similar patterns to that of HA. One difference 

is the peak height. When the reaction time increases, heights of the entire patterns slightly 

decrease. This indicates that in the sample of PLGA-grafted HA powders, other non-crystalline 

material like grafted PLGA exists besides HA. 

 

For the detailed analysis, the XRD patterns of the non-grafted HA and PLGA-g-HA 

powders are presented in Figure 25(b); the average crystallite sizes (D) and crystalline 

fractions (Xc) are summarized in Table 7. HA exhibits four intense peaks at the diffraction 

angles of 25.9, 31.82, 32.1, and 32.82°, corresponding to the (002), (211), (112), and (300) 

planes of HA, respectively. PLGA-g-HA shows the same peaks, consistent with the crystalline 

nature of HA, even after surface grafting; this agrees with previously reported results 

(Murugan and Rao 2003, Wang, Dai et al. 2010). This suggests that surface grafting does not 

induce the formation of secondary phases in the HA crystalline lattice (Wang, Dai et al. 2010). 

However, the diffraction pattern also confirms that PLGA-g-HA has crystalline characteristics 

originating from HA, indicating that the PLGA polymer chains are successfully grafted onto 

the HA surfaces in the PLGA-g-HA particles. PLGA may exhibit a broad, low-intensity peak 

between 10 and 30°, as it is amorphous in nature (Kim and Park 2004, Ignjatović, Djurić et al. 

2014), but it is clear that only a small amount of PLGA is grafted onto the HA surface in that 

the PLGA appears unclear in the XRD pattern. PLGA and HA are verified as homogeneous in 

distribution in the PLGA-g-HA particles because the total peak intensities of the PLGA-g-HA 

pattern were slightly lower than those of the non-grafted HA. The diffraction plane (002) 

relates to the overall average crystallite size D of HA particles (He and Huang 2007), so its 

peak is used to calculate D by using Scherrer’s equation. As shown in Table 4, D and Xc show 

small decreases after surface grafting because of the effects of PLGA polymer chains, as 

previously reported (Rusu, Ng et al. 2005), but the intrinsic crystalline structure of HA is 

maintained in the PLGA-g-HA powder. In summary, the PLGA-g-HA powder seemed to form 

a new crystalline structure based on SEM observations; however, it is more plausible that the 

PLGA-g-HA particles are agglomerated by increased attraction between adjacent PLGA 

polymer chains by mechanisms such as H bonding or van der Waals forces. This agglomeration 
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may also affect the thermal and mechanical properties of the composite prepared by re-

dispersion, as discussed later in Chapter 3. 
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Figure 25. Powder XRD patterns of non-grafted HA and PLGA-grafted HA powders: 

         (a) Powder XRD patterns with different reaction time 

         (b) Peak comparison between HA and PLGA-g-HA 

  

(a) 

(b) 
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Table 7. Crystallite size and fraction crystallinity of non-grafted HA and PLGA-g-HA 

       powders 

 
Bragg angle 

(°) 

FWHM 

(°) 
FWHM (rad) D (nm) Xc 

non-grafted HA 25.848 0.291 0.00508 29.29 0.561 

PLGA-g-HA 25.852 0.313 0.00547 27.19 0.450 
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3. Conclusion 

 

The surface modification of HA was attempted to improve the biocomposites consisting of 

PLGA and HA. To find the optimal condition, the mixtures of PLGA:HA ratios of 10:90, 20:80, 

30:70, and 50:50 were prepared and reacted for 3, 5, 10, 30, 60, and 120 min, respectively. 

PLGA-grafted HA powders as the second sediments and the first supernatants for GPC 

measurement were separated through the centrifugation and washing. 

 

PLGA-grafted HA powders were characterized using TGA, GPC, FTIR, NMR, SEM, and 

XRD. TGA isothermal tests and temperature sweep tests of PLGA and HA confirm the thermal 

stability before thermal composition temperatures thus the concept of the grafted weight 

fraction was introduced to calculate how many PLGA polymer chains were grafted onto HA. 

The calculated grafted weight fractions generally increase as the reaction time increases and 

the ratio of PLGA increases except for the case of excessive PLGA. The optimal condition of 

grafting reaction was selected with the maximum grafted weight fraction of 10.032 wt%. This 

condition was named as “PLGA-g-HA” (PLGA:HA = 30:70 and 30 min reacted). The first 

supernatants were indirectly used to figure out the effect of the reaction on the molecular 

weights. GPC measurements lead to the reduction of the molecular weights and change of 

polydispersity indices, which supports the occurrence of the grafting reaction. Through FTIR 

analysis, it is confirmed that the surface grafting reaction between PLGA and HA occurs by 

esterification, as the spectra near 1720 cm −1 corresponding to C=O linkages changed. Likewise, 

solid-state 1H NMR spectra displays the decreases at −0.10 ppm and 5.23 ppm corresponding 

to structural hydroxyl groups and surface-absorbed water molecules, respectively. The 

structural hydroxyl groups of 3.125% participated in the reaction as calculated using the 

reference peaks. SEM observation and XRD patterns additionally support the occurrence of 

the reaction by the morphological change of PLGA-grafted HA powders. 
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Chapter 3 

Thermal, mechanical and viscoelastic properties of 

PLGA/HA composites with different preparation methods 
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1. Experimental 

 

1.1. Preparation of the PLGA/PLGA-g-HA composites 

 

A mass of PLGA-g-HA was ground into powder and PLGA pellets were milled in a mortar, 

respectively. PLGA/PLGA-g-HA composite precursors were prepared through three different 

blending methods before injection molding. All composites were prepared such that the weight 

ratio of PLGA:PLGA-g-HA was 70:30. The first method was extrusion using a twin-screw 

compounding extruder BA-7 (L/D = 40/7) (Bautek, Republic of Korea). The temperatures of 

all four heating zones in the extruder were 170 °C. The screw speed was 100 rpm and its torque 

was 3.00 N·m. The extrudates were cut using a pelletizer. The second method was simply 

blending milled PLGA with PLGA-g-HA powders using a shaker at 200 rpm for 3 h. The third 

method was dispersing PLGA and PLGA-g-HA in chloroform by magnetic stirring at 50 °C 

for 6 h. The suspension was dried at 50 °C for 24 h to remove the residual chloroform and then 

cut into small pieces. After blending through these different methods, tensile test specimens 

and DMA specimens were prepared using an injection-molding machine (Bautek, Republic of 

Korea). Each specimen was blended by a 100-rpm rotor for 5 min under heating at 170 °C. 

The samples were named depending on the blending methods as PLGA/g-HA1, PLGA/g-HA2, 

PLGA/g-HA3 for the first, second, and third method, respectively. As a control, a PLGA:HA 

mixture of 70:30 by weight was heat treated at 200 °C for 3 min. 
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1.2. Characterization of the PLGA/PLGA-g-HA composites 

 

1.2.1. DSC 

 

DSC analysis was performed using a DSC Q200 (TA Instruments, USA) apparatus with a 

refrigerator cooling system (RCS 90) to determine the glass transition (Tg), crystallization (Tc), 

and melting (Tm) temperatures of PLGA-g-HA. Samples of ~5 mg were loaded in Al pans with 

50.0-mL/min high-purity N2 used as the purge gas. The samples were first scanned from 30 to 

200 °C at a heating rate of 10 °C/min to erase previous thermal history. After rapid quenching 

to −50 °C, the samples were scanned from −50 to 200 °C at a heating rate of 5 °C/min. The 

degree of crystallinity (Xc) was calculated using the following equation: 

𝑋c (%) = (Δ𝐻𝑚 Δ𝐻𝑓
0⁄ ) × 100 

where Δ𝐻𝑚  is the enthalpy of fusion of the specimen and Δ𝐻𝑓
0  is 93.7 J/g, which is the 

enthalpy of fusion for 100% crystalline PLA (Hong, Zhang et al. 2005). 

  



73 

 

1.2.2. Tensile testing 

 

Dogbone-shaped tensile specimens were prepared according to ASTM D638 (Type V). 

Tensile testing was performed using an AllroundLine Z010 Universal Testing Machine (UTM) 

(Zwick, Germany) at a crosshead speed of 10 mm/min at RT. A 200-kN load cell with a pincer 

8222 grip and extensometer was used for the test under the grip-to-grip separation of 20 mm 

and pre-loading of 1 N at a rate of 5 mm/min. At least five specimens were tested for each 

blending method and the tensile strength, modulus, and elongation were obtained by averaging 

data from five specimens. 
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1.2.3. DMA 

 

Rectangular DMA specimens were prepared measuring 60 mm × 12 mm × 3 mm. DMA 

was performed using a DMA Q800 apparatus (TA Instruments, USA). The measurements were 

performed under the multi-frequency-strain mode at a fixed frequency of 1 Hz using a dual-

cantilever clamp with a 35-mm span length and a purge fluid of 50-mL/min liquid N2. The 

oscillating amplitude was 40 µm. The temperature scanning range was from 30 to 140 °C at 

the heating rate of 3 °C/min. The storage modulus, loss modulus, and damping factor (tan(δ)) 

were measured. 
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2. Results and Discussion 

 

2.1. Thermal properties 

 

DSC data of neat PLGA, PLGA/HA, and PLGA/PLGA-g-HA composites blended by 

different methods are shown in Figure 26 and Table 8; in details, such as Tg, Tc, Tm, and Xc for 

the first and second heating scan. In thermograms, the composites exhibit broad exothermic 

crystallization peaks and uncertain endothermic melting peaks because of their previous 

thermal histories. Therefore, the thermal properties, except for the Tg of samples and the Tm 

and ΔHm of PLGA, were analyzed from the second heating scan. PLGA (L-lactide:glycolide = 

82:18) is generally ~10% crystalline (Gilding and Reed 1979), but the Xc of PLGA found here 

is significantly higher. This may result from the partial crystallization of L-lactide units by the 

influence of the previous thermal history (or possibly other, uncertain reasons). To calculate 

the degree of crystallinity, the enthalpy of fusion of 100% crystalline PLA was used, because 

PLGA copolymers with 25–75% glycolide units are fully amorphous; for <25% glycolide units, 

there is too little glycolide to form crystalline regions, but L-lactide units could crystallize 

instead (Gilding and Reed 1979). Each Tg, Tc, and Tm in the first scan is lower than those in 

the second scan. Compared to neat PLGA, the composites show a greater decrease in Tg; 

PLGA/g-HA1 has the highest decrease. This means that the thermal stability of PLGA was 

relatively poor, possibly because of additional reactions of unreacted HA surface hydroxyl 

groups with adjacent PLGA. The PLGA polymer chains of PLGA/g-HA1 were the most 

degraded by heat because of the extrusion molding process used for blending. Therefore, 

extrusion molding is inappropriate to create composites consisting of PLGA and non-grafted 

HA because the composites show low thermal stabilities. Meanwhile, PLGA shows no 

crystallization peak, but the composites clearly do in Figure 26. This can be explained by the 

nucleating ability of the HA fillers to crystallize PLGA polymer chains, which may contribute 

to the enhanced mechanical properties of the composites (He and Huang 2007). The Tg is 

decreased upon the addition of the HA or PLGA-g-HA, suggesting that the fillers affect the 

organization and orientation of PLGA polymer chain packing (Song, Ling et al. 2013). The 

fillers could affect chain mobility to reduce constriction in the amorphous regions of the 

polymer chains (Rahman, Afrin et al. 2014, Almasi, Ghanbarzadeh et al. 2015), thereby 

causing Tg to decrease. The Tm is increased upon the addition of the non-grafted HA or PLGA-
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g-HA, suggesting stronger interactions between the PLGA matrix and filler. The composites 

display two melting transition peaks in the thermograms. The occurrence of double melting 

peaks is a common phenomenon for semi-crystalline polymers, resulting from the melt-

reorganization of less ordered crystals (Wang, Song et al. 2017). Therefore, semi-crystalline 

regions of L-lactide units might be formed by the segmentation of PLGA polymer chains by 

reaction with HA, which also explains the non-zero Xc values of the composites with PLGA, 

despite PLGA’s amorphous nature. Furthermore, all PLGA/PLGA-g-HA specimens, except 

for PLGA/g-HA1, show higher Tg, Tc, Tm, and Xc values compared to PLGA/HA, indicating 

stronger physical linking and improved compatibility between the PLGA matrix and PLGA-

g-HA. Among the PLGA/PLGA-g-HA specimens, PLGA/g-HA1 was the lowest, PLGA/g-

HA2 median, and PLGA/g-HA3 the highest in Tg, Tc, Tm, and Xc. The Tm of PLGA/g-HA2 and 

PLGA/g-HA3 are higher than that of neat PLGA. This indicates that, for PLGA/PLGA-g-HA, 

the thermal properties of composites differ significantly depending on the preparation methods; 

the re-dispersion of PLGA-g-HA enhances the physical miscibility and nucleating effects 

during composite preparation. 
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Figure 26. DSC thermograms of neat PLGA, PLGA/HA, and PLGA/PLGA-g-HA 

         composites: 

         (a) First heating scan 

         (b) Second heating scan 
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Table 8. Thermal properties of neat PLGA, PLGA/HA and PLGA/PLGA-g-HA composites 

  Tg (°C) Tc (°C) Tm (°C) 
ΔHm 

(J/g) 
Xc (%) 

First 

heating 

scan 

PLGA 61.51 - 141.78 25.50 27.21 

PLGA/g-HA1 54.47 103.94 149.69 15.14 16.16 

PLGA/g-HA2 58.05 107.37 147.67  9.04  9.65 

PLGA/g-HA3 58.86 110.33 145.72  6.70  7.15 

PLGA/HA 57.30 111.64 149.73  9.31  9.94 

Second 

heating 

scan 

PLGA 53.51 - - - - 

PLGA/g-HA1 28.35  80.97 134.14 12.09 12.90 

PLGA/g-HA2 39.36 100.93 142.92 13.80 14.73 

PLGA/g-HA3 45.56 106.40 149.58 15.09 16.10 

PLGA/HA 34.01  94.70 138.49 13.07 13.95 

  



79 

 

2.2. Mechanical properties 

 

The representative stress–strain curves of neat PLGA, PLGA/HA, and PLGA/PLGA-g-HA 

composites are shown in Figure 27; their tensile strengths, elongations at break, and elastic 

moduli are shown in Figure 28. The stress–strain curves of PLGA and PLGA/HA are 

characteristic of ductile materials, but those of PLGA/PLGA-g-HA are characteristic of brittle 

materials. The neat PLGA exhibits the highest tensile strength and the highest elongation at 

break. For PLGA/HA, the introduction of HA deteriorates the mechanical properties of the 

PLGA matrix. However, the composite with HA is necessary for high biocompatibility, despite 

the decrease of mechanical properties. Compared to PLGA/HA, all PLGA/PLGA-g-HA 

specimens exhibit greater tensile strengths in Figure 28. Regardless of preparation method, 

PLGA-g-HA shows higher compatibility with the PLGA matrix than non-grafted HA does. 

This is because the PLGA polymer chains grafted on the HA surface penetrate the oriented 

alignment of PLGA matrix, therefore crystallizing and entangling with more matrix polymer 

chains throughout the matrix–filler interface. Among the PLGA/PLGA-g-HA specimens, 

PLGA/g-HA3 has the highest tensile strength and PLGA/g-HA1 the lowest. Therefore, the re-

dispersion of filler enhances tensile strength because of the high degree of dispersion; however, 

extrusion molding deteriorates the tensile strength because of the thermal degradation of 

polymer chains and additional reactions with unreacted surface hydroxyl groups of HA. This 

agrees with the Xc measured by DSC. PLGA/g-HA1 shows a lower Tg than the others, which 

suggests that the PLGA polymer chains grafted on the HA surfaces are shortened. This loosens 

the entanglement between PLGA matrix and filler, thus causing decreases in tensile strength. 

Furthermore, the change in Xc of the composites has the same tendency as the change in their 

tensile strengths. High tensile strength is clearly caused by the high Xc of PLGA/PLGA-g-HA. 

PLGA/HA exhibits higher elongation at break compared to all PLGA/PLGA-g-HA specimens. 

This means that PLGA/PLGA-g-HA gains enhanced tensile strength at the expense of ductility, 

while PLGA/HA maintains ductility even when blended with HA. Nevertheless, 

PLGA/PLGA-g-HA shows no plastic deformation region in Figure 27, meaning that these 

composites can respond to stress elastically to some extent. As shown in Figure 28, 

PLGA/PLGA-g-HA have slightly increased elastic moduli than neat PLGA and higher elastic 

moduli than PLGA/HA. The PLGA-g-HA filler negatively affects the strength of polymer 

matrix, but positively affects the stiffness of the composites. This may also be attributed to the 

entanglement between the grafted PLGA polymer chains and PLGA matrix in contrast with 
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the non-grafted HA. The elastic moduli of the composites show tendencies similar to those of 

their tensile strengths. In a previous study (Almasi, Ghanbarzadeh et al. 2015), this tendency 

was explained by three different mechanisms: surface compatibility and increased matrix–

filler interactions, decreased free inter-chain spaces, and increased composite crystallinity. 

These three mechanisms can explain the results measured by DSC and mechanical testing. 
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Figure 27. Representative stress-strain curves of neat PLGA, PLGA/HA, and 

         PLGA/PLGA-g-HA composites 
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Figure 28. Tensile strengths, elongations at break, and elastic moduli of neat PLGA, 

         PLGA/HA, and PLGA/PLGA-g-HA composites 
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2.3. Viscoelastic properties 

 

DMA thermograms of neat PLGA, PLGA/HA, and PLGA/PLGA-g-HA composites are 

shown in Figure 29; detailed data, such as the storage moduli at 30, 60, 90, and 120 °C (E´30°C, 

E´60°C, E´90°C and E´120°C, respectively), maximum tan δ value ((tan δ)max), glass transition 

temperature (Tg), effectiveness coefficient (C), and adhesion factor (A), are shown in Table 9. 

Tg is determined as the temperature at which the tan δ is maximized. As shown in Figure 29(a) 

and Table 9, the E´30°C of all composites are higher than that of PLGA, demonstrating the 

reinforcement effect of the fillers from matrix-filler interactions. This reinforcement is 

attributed to the effect of stiffness provided by the inorganic fillers to the polymer matrix, 

which indicates enhanced interfacial stress transfer within the composites (Akindoyo, Beg et 

al. 2017) and alignment with a more efficiently packed structure (Sonseca, Peponi et al. 2012). 

The storage moduli of all samples decrease sharply as the temperature increases. This glass 

transition is attributed to the increased chain mobility (Liu, Wang et al. 2014). In Figure 29(a), 

compared to PLGA, the composites display shorter plateau regions before Tg; PLGA/HA has 

the shortest plateau region. This indicates the decreased thermal stability of the PLGA matrix, 

which may arise from the decreased chain length by grafting reactions with HA. All 

PLGA/PLGA-g-HA show longer plateau regions than PLGA/HA, indicating decreased 

thermal stability by additional reactions of unreacted hydroxyl groups on the surface of HA, 

as previously mentioned. As shown in Figure 29(b), the composites have higher loss modulus 

peaks than PLGA. This is attributed to the increase of chain segments and free volume of the 

PLGA matrix after the addition of HA, which inhibits stress relaxation within the composites 

(Romanzini, Lavoratti et al. 2013). In Figure 29(a) and (b), the storage and loss modulus 

decreased after Tg but increased slightly at ~90 °C, indicating the cold crystallization of the 

composites. After the increases in the modulus induced by crystallization, another decrease of 

the storage modulus occurs around 120–130 °C, indicating that the composites are softened at 

the onset of melting (Mofokeng, Luyt et al. 2012). The cold crystallization and softening are 

confirmed by DSC. As shown in Table 9, PLGA/PLGA-g-HA display higher Tg than 

PLGA/HA, and PLGA/g-HA3 has even higher Tg than PLGA. This is caused by the 

agglomeration of PLGA-g-HA particles, as revealed by SEM micrographs. The agglomeration 

of filler restricts the mobility of polymer chains and thus increases the Tg (Liu, Wang et al. 

2014). From PLGA/g-HA3, the dispersion of filler within the polymer matrix effectively 

restricts the polymer chain mobility. The decrease in Tg of PLGA/g-HA1 is ascribed to the low 
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thermal stability arising from thermal degradation during extrusion molding, as previously 

mentioned. The tan δ values of PLGA and composites are presented in Figure 29(c), with (tan 

δ)max summarized in Table 9. The tan δ is an effective indicator of interfacial adhesion between 

the polymer matrix and filler; better adhesion corresponds to lower tan δ values because of the 

decreased polymer chain mobility (Krishna and Kanny 2016). The improved interfacial 

adhesion is related to the enhanced stress transfer within the composites, and causes the 

enhancement in mechanical properties (Akindoyo, Beg et al. 2017). Therefore, the composites 

show improved interfacial adhesion in terms of (tan δ)max. Despite having the lowest (tan δ)max, 

however, PLGA/HA shows poor tensile strength and elastic modulus as seen in Figure 28. This 

contradiction can be explained by the high content of unreacted HA hydroxyl groups in 

PLGA/HA; therefore, additional reactions with HA shorten the chain length of the PLGA 

matrix and promote decreases in storage modulus, which indicates adhesion without sufficient 

entanglement. 

 

For the further analysis, the effectiveness coefficient (C) and the adhesion factor (A) were 

introduced. C is defined as: 

𝐶 =  
𝐸𝑔

′ 𝐸𝑟
′  (composite)⁄

𝐸𝑔
′ 𝐸𝑟

′  (resin)⁄
 

where 𝐸𝑔
′  is the storage modulus in the glassy state region (at 30 °C), and 𝐸𝑟

′  is the storage 

modulus in the rubbery state region (at 75 °C). It is reported that higher C means lower 

effectiveness (Romanzini, Lavoratti et al. 2013). PLGA/g-HA2 and PLGA/g-HA3 have low C, 

confirming that PLGA/PLGA-g-HA is more effective in transferring stress within the polymer 

matrix compared to PLGA and PLGA/HA. A is defined as: 

𝐴 =  
1

1 − 𝑉𝑓

tan δc

tan δp
− 1 

where tan δc is the tan δ of the composite, tan δp is the tan δ of the pure polymer (at 30 °C), 

and 𝑉𝑓   is the volume fraction of the filler; here, the volume fraction is replaced with the 

weight fraction. It is reported that lower A corresponds to better interfacial adhesion (Correa, 

Razzino et al. 2007). PLGA/g-HA2 and PLGA/g-HA3 have low A values, confirming the strong 

adherence of PLGA-g-HA with the PLGA matrix at the interface. Meanwhile, PLGA/g-HA2 

has lower C and A values than PLGA/g-HA3 has. Without re-dispersion, the PLGA-g-HA 

agglomerates are easily formed, as discussed in Chapter 2; this reduces the apparent volume 

fraction of the polymer matrix, as if more fillers were loaded (Song and Youn 2005). Therefore, 
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the stiffness of filler itself has greater influence on the storage moduli of poorly dispersed 

composites, leading to lower C and A values. 

  



86 

 

30 60 90 120

10
1

10
2

10
3

10
4

 PLGA

 PLGA/g-HA1

 PLGA/g-HA2

 PLGA/g-HA3

 PLGA/HA

S
to

ra
g

e
 M

o
d

u
lu

s
 (

M
P

a
)

Temperature (
o
C)

 

 

30 35 40 45 50 55 60
3000

3500

4000

4500

5000

5500

 

30 60 90 120

10
0

10
1

10
2

10
3

L
o

s
s
 M

o
d

u
lu

s
 (

M
P

a
)

Temperature (
o
C)

 PLGA

 PLGA/g-HA1

 PLGA/g-HA2

 PLGA/g-HA3

 PLGA/HA

 

(a) 

(b) 



87 

 

30 60 90 120

0.0

0.5

1.0

1.5

2.0

T
a
n

 D
e
lt

a

Temperature (
o
C)

 PLGA

 PLGA/g-HA1

 PLGA/g-HA2

 PLGA/g-HA3

 PLGA/HA

 

Figure 29. DMA thermograms of neat PLGA, PLGA/HA, and PLGA/PLGA-g-HA 

         composites: 

         (a) Storage modulus 

         (b) Loss modulus 

         (c) Tan delta 
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Table 9. Viscoelastic properties of neat PLGA, PLGA/HA and PLGA/PLGA-g-HA 

       composites 

 
E´30°C 

(MPa) 

E´60°C 

(MPa) 

E´90°C 

(MPa) 

E´120°C 

(MPa) 

(tan 

δ)max 

Tg 

(°C) 
C A 

PLGA 3738.27 1375.85 10.83   7.61 1.95 65.07 1.000 0.000 

PLGA/g-HA1 4438.53  257.30  9.01 188.51 1.50 62.33 1.197 1.186 

PLGA/g-HA2 5224.13 1113.27 23.41  90.81 1.35 64.01 0.608 0.021 

PLGA/g-HA3 4788.22  667.60 11.07 127.54 1.47 65.95 0.936 0.928 

PLGA/HA 4212.04   26.47 18.92 143.12 0.86 51.02 1.509 3.761 
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3. Conclusion 

 

On the basis of the analysis on the surface grafting reaction, the PLGA:HA ratio of 30:70 

reacted for 30 min (named as “PLGA-g-HA”) was chosen for the composites among PLGA-

grafted HA. The precursors containing PLGA and PLGA-g-HA with the ratio of 70:30 were 

prepared by three different preparation methods: Extrusion molding, simple blending, and re-

dispersion. Eventually, the composites containing PLGA and PLGA-g-HA were prepared 

using an injection-molding machine. 

 

PLGA/PLGA-g-HA composites were characterized using DSC, UTM, and DMA. PLGA-

g-HA particles had influences on the thermal, mechanical and viscoelastic properties of the 

composites according to preparation methods. PLGA/PLGA-g-HA composites exhibit 

enhanced mechanical properties compared to PLGA/HA composite. Furthermore, the 

composites prepared by simple blending (PLGA/g-HA2) and re-dispersion (PLGA/g-HA3) 

showed improved storage modulus and improved tensile strength, respectively, while the 

composite prepared by extrusion molding (PLGA/g-HA1) showed lowered tensile strength and 

storage modulus. Through DSC analysis, it is also found that each composite displays different 

thermal properties such as the glass transition temperature, the melting temperature, and the 

degree of crystallinity. Therefore, heat, dispersion, and interfacial adhesion between PLGA 

and HA are identified as the critical factors which determine mechanical properties of the 

composites. Our results indicate that preparation methods have a strong influence on properties 

of the composites and they could be manipulated for specific contexts after the surface grafting 

reaction and preparation methods are fully understood. 
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초 록 

 

본 논문에서는, 하이드록시아파타이트 (Hydroxyapatite, HA) 표면에 위치하는 

하이드록실 (hydroxyl) 작용기에 직접적으로 Poly(lactide-co-glycolide) (PLGA) 

공중합체의 고분자 체인을 그래프팅하여, PLGA와 PLGA가 그래프팅된 

하이드록시아파타이트 (PLGA-g-HA) 간의 복합재료의 계면 접착력에 

하이드록시아파타이트의 표면 개질이 미치는 영향과 그에 따른 물성 변화에 

대해 관찰하고자 하였다. 

적외선 분광분석 (FTIR) 과 핵자기공명 분광분석 (NMR) 을 통해 

하이드록시아파타이트 표면에서의 에스터 (ester) 결합이 형성됨을 확인하였다. 

열중량 분석 (TGA) 을 통해 표면에 그래프팅된 고분자의 양은 10.032 wt% 임을 

확인하였다. 고체상 수소 NMR 스펙트럼 결과를 통해 그래프팅 이후 

하이드록시아파타이트 표면의 하이드록실 작용기의 양이 3.125% 감소했음을 

확인하였다. 겔 투과 크로마토그래피 (GPC) 분석을 통해 그래프팅에 따른 분자량 

감소를 확인하였다. X선 회절 분석 (XRD) 패턴과 주사 전자 현미경 (SEM) 관찰을 

통해 그래프팅이 성공적으로 일어났음을 추가적으로 확인하였다. 

하이드록시아파타이트 표면에 PLGA를 그래프팅한 후 세 가지 방법으로 

PLGA/PLGA-g-HA 복합재료를 제조하였다: 압출 가공, 단순 블렌딩, 재분산 후 

사출 가공. 제조된 복합재료의 열적, 기계적, 점탄성적 물성을 각각 시차 주사 

열량계 (DSC), 인장강도 테스트, 동적 점탄성 분석기 (DMA) 를 통해 분석하였다. 

세 가지 분석 결과에 따르면, 복합재료의 제조방법이 최종적인 복합재료의 

물성에 중요한 영향을 미친다는 결과를 확인하였다. 
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