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Abstract: Acrylic pressure-sensitive adhesives (PSAs) are used as fixatives between layers of a display.
PSAs’ function is an important factor that determines the performance of the display. Of the
various display types available, the touch screen panel (TSP) of smart devices is firmly related to
the relative permittivity of the elementals. Therefore, adjusting the relative permittivity of the PSA
is indispensable for driving the TSP. Accordingly, selected acrylic pre-polymers were polymerized
and the pre-polymer was blended and cross-linked with monomers with different chemical
structure to adjust the relative permittivity. The monomers were hexametyldisiloxane (HMDS),
N-vinylcaprolactam (NVC), tert-butyl acrylate (TBA), and isooctadecyl acrylate (ISTA). The gel
fraction and transmittance as a function of the monomers show a similar result to the pure acrylic PSA.
However, the gel fraction value decreased to about 90% and the transmittance decreased to about 85%,
due to the immiscibility between nonpolar HMDS and acrylic PSA. On the other hand, the adhesion
properties were improved when NVC was added because of the polarity of the nitrogen group.
In addition, the relative permittivity of the PSA decreased regardless of the monomer chosen.
There was, however, a difference in the optimal content of each monomer, and NVC decreased
from 4 phr content to about 3.4 in reducing relative permittivity. Through the above results, it was
confirmed that NVC having a nitrogen group is most advantageous in lowering adhesion properties
and relative permittivity, and necessitates further research based on the findings.

Keywords: acrylic pressure-sensitive adhesive; monomer; adhesion performance; relative
permittivity; free volume

1. Introduction

Pressure-sensitive adhesives (PSAs) are widely used in various industrial fields, such as
medical products, aircraft, space shuttles, electrical devices, optical products, and automobiles.
In particular, the demand for functional PSAs is rapidly increasing in the display market [1].
Displays are composed of a plurality of layer types and PSAs play an important fixative role.
The PSA can fix the base material by applying slight pressure and becomes easy to adjust,
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while the processing rate can be increased [2]. Recently, to improve the technological development
of displays, broader properties of the PSA function are required including transparency high elongation,
high recovery, and heat dissipation [3].

Optical clarity means a transmittance of 90% or more in the range of 400 to 800 nm and PSA satisfies
this criteria defining the utility of optical clear adhesives (OCAs). PSA includes rubber, acrylic, silicone,
and urethane, and acrylic PSA is widely used in terms of their optical clarity. Moreover, the process
time can be significantly reduced, and UV crosslinking is considerably economical as a technique.
As the transmittance of PSA is a very important factor in display quality, a low transmittance may
limit its application in the display industry [4,5].

A touch screen panel (TSP) is a major technology for increasing input convenience and reducing
product weight by replacing the keyboard in the display of electronic devices. The demand for
TSP has soared owing to the spread of smart phones and tablet PCs, and it is essential to improve
touch sensitivity. A capacitive touch screen panel is composed of a top and bottom plate, on which
a transparent electrode (indium tin oxide, ITO) is deposited and each layer is fixed using PSAs
(see Figure 1). As part of the capacitive method, a current flow operates through ITO on one side of
the glass or a transparent film and a touch operation is recognized by sensing a change in capacitance
that occurs when a finger or a touch pen touches the touch screen surface.
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Figure 1. Structure of capacitance type touch screen panel (TSP). PSA, pressure-sensitive adhesive;
ITO, indium tin oxide.

The relative permittivity is a measure of the degree of polarization of electric charges inside when
an electric field is applied to the non-conductor surface from the outside. From this point of view,
the non-conductor is called the dielectric (ε). The relative permittivity (εγ, dielectric constant) refers to
the ratio of the permittivity of the material base relative to the permittivity in a vacuum. In other words,
the relative permittivity is determined by the permittivity of a substance (see Figure 2) [6] and can be
expressed by the following equation:

εγ = ε/ε0 (1)

Over the past decade, the performance of microelectronic integrated circuits (ICs) that make-up
electronic devices has been improved owing to an increase in transistor speed and a decrease in size.
ICs have become faster and more complex because smaller transistors run faster. However, these efforts
are causing a decrease in the speed of signal propagation. The signal delay can increase with the size
of the electronic device, which can degrade the performance of the final product. In other words,
continuous shrinkage increases the speed of the transistor, but decreases the interconnection between
the transistors. A way to improve this is to use a non-conductor with a low dielectric constant [7].
Non-conductors with a relative permittivity of 4.2 or less are called low-k dielectrics [8]. In addition,
the relative permittivity of the capacitive TSP is closely related to the touch sensitivity. In order for PSA
to be applied to TSPs, the relative permittivity of the material that affects touch sensitivity becomes
a very important factor. If the permittivity is not adjusted, noise may be easily detected or signal
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transmission time may be delayed [9]. Therefore, the factor controlling the relative permittivity of
the dielectric itself is very important. The relative permittivity control method includes a method of
lowering the polarity using polarizable groups such as C-H, C-C, C-O, C-Si, and C-F bonds and a
method of lowering the density by introducing free volume and nano-pores [10–23]. However, research
results have also been reported that such voids can affect mechanical properties [24–29].
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In this research, the possibility of adjusting the relative permittivity of monomers composed of
various chemical structures was analyzed and mapped to behavioral changes in adhesion properties.
An acrylic pre-polymer was synthesized via UV polymerization with acrylate monomers. In addition,
four types of monomers were chosen and mixed with the pre-polymer. An acrylic PSA sheet was
prepared via photo-crosslinking as a function of the monomer content. The crosslinking degree
of the PSAs was confirmed via gel fraction and the transmittance was measured using a UV/vis
spectrophotometer. The adhesion property was measured via the peel strength, probe tack, and lap
shear strength. The relative permittivity was measured using a micro vacuum probe station to obtain
reliable data as a function of chemical structure and content of the monomer. Through these results,
we tried to confirm the applicability of the low-k monomer in controlling the relative permittivity,
adhesion performance, and optical property of the acrylic PSA for TSP. In addition, it was attempted to
secure a reliable relative permittivity value of semi-solid samples at room temperature as a result of a
low glass transition temperature (Tg).

2. Experimental Section

2.1. Materials and Chemicals

Reactive acrylic monomers, 2-hydroxyethyl acrylate (2-HEA, 99.0%), 2-ethylhexyl acrylate
(2-EHA, 99.0%), and isobutyl acrylate (IBA, 99.0%), were purchased from Samchun Pure Chemical
(Republic of Korea). They were used as received without further purification to synthesize
the acrylic pre-polymers. Hexamethyldisiloxane (HMDS, Sigma-Aldrich, St. Louis, MO, USA),
N-vinylcaprolactam (NVC, Tokyo Chemical Industry Co., Ltd., Tokyo, Japan), tert-butyl acrylate
(TBA, Sigma-Aldrich, USA), and isooctadecyl acrylate (ISTA, Nippon Shokubai Co., Ltd., Osaka, Japan)
were selected as the monomers to adjust relative permittivity of the acrylic PSA via introduction of
free volume (see Figure 3). 2-hydroxy-2-methyl-1-phenyl-1-one (Irgacure 1173, BASF, Ludwigshafen,
Germany) and Phosphine oxide (Irgacure 2100, BASF, Germany) were used as the photoinitiator for
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the acrylic pre-polymer synthesis and UV crosslinking, respectively. Crosslinking for the pre-polymer
was used 1,6-hexanediol diacrylate (HDDA, Sigma-Aldrich, USA).
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2.2. Acrylic Pre-Polymer Synthesis

The acrylic monomers were blended with an Irgacure 1173 inside a 500 mL four-neck
round-bottomed flask equipped with a stirrer, thermometer, and N2 purging tube (the formulation
of the synthesized acrylic pre-polymer is listed in Table 1). The mixture was continuously stirred for
20 min at room temperature with N2 gas. The monomer mixture was synthesized by UV irradiating
using a UV-spot cure system (SP-9, USHIO, Tokyo, Japan) under a N2-rich atmosphere until the
temperature of the mixture rose by 5 ◦C. The above process was iterated five times and the product
was stored in a wide-mouth bottle to protect the acrylic pre-polymer from light and air.

Table 1. Formulation of acrylic pre-polymer. 2-HEA, 2-hydroxyethyl acrylate; 2-EHA, 2-ethylhexyl
acrylate; IBA, isobutyl acrylate.

Sample Names
Reactive Monomers

2-HEA (wt.%) 2-EHA (wt.%) IBA (wt.%)

Acrylic Pre-Polymer 20 60 20

Photoinitiator: 2-hydroxy-2-methyl-1-phenyl-1-one, Irgacure 1173.

2.3. UV Crosslinking of Acrylic PSAs with Monomers

PSA sheets with monomers were prepared by blending 100 wt.% of the synthesized acrylic
pre-polymer with 1 part per hundred resin (phr) of HDDA and Irgacure 2100 as a function of the
monomer content (see Table 2). The mixture was combined and deformed using a paste mixer
(SR-500, Thinky, Tokyo, Japan) for 4 min. The blends were coated onto the surface of corona-treated
polyethylene terephthalate (PET) films about 50 µm in thickness and cross-linked by UV light,
approximately 1300 mJ/cm2.

Table 2. Formulation of cross-linked acrylic pre-polymer/monomer blends. PSA, pressure-sensitive
adhesive; HMDS, hexamethyldisiloxane; NVC, N-vinylcaprolactam; TBA, tert-butyl acrylate;
ISTA, isooctadecyl acrylate.

Sample Names Acrylic Pre-Polymer
(wt.%)

Monomers

HMDS
(phr)

NVC
(phr)

TBA
(phr)

ISTA
(phr)

PSA-HMDS

100

2/4/6/8/10 - - -
PSA-NVC - 2/4/6/8/10 - -
PSA-TBA - - 2/4/6/8/10 -
PSA-ISTA - - - 2/4/6/8/10

Crosslinking agent: 1,6-hexanediol diacrylate, HDDA; Photoinitiator: phosphine oxide, Irgacure 2100.
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2.4. Characterizations

To confirm the influence of monomers on the crosslinking degree of the PSA, the gel fraction was
measured as a function of the monomer content. The gel fractions of cross-linked PSA as a function
of HDDA content were determined by soaking about 5 g of the PSA in toluene for 24 h at room
temperature with shaking. The soluble part was removed by filtration and dried at 80 ◦C for 6 h to
obtain a constant weight. The gel fraction was calculated by the following equation:

Gel fraction (%) = (W1/W0) × 100 (2)

where W0 and W1 are the weights before and after soaking and filtration, respectively.
Visible light transmittance of the specimens as a function of monomer type and content

was measured in the wavelength of 400 to 800 nm using UV/vis spectrophotometry (Cary 100,
Agilent Technologies, Santa Clara, CA, USA). The PSA specimens were prepared to a thickness of
approximately 400 µm.

The peel strengths of the PSAs according to the type and content of monomer were investigated
using a texture analyzer (TA-XT2i, Micro Stable Systems, Godalming, UK). Firstly, 25 mm width
PSA films were attached to a stainless steel (SUS) substrate and pressed twice by a 2 kg rubber roller.
The peel strength was determined at an angle of 180◦ with a crosshead speed of 300 mm/min at room
temperature based on ASTM D3330. The specimens were pressed onto stainless steel (SUS) substrates
by two passes of a 2 kg rubber roller and then stored at room temperature for 24 h. Each sample was
repeatedly measured three times, and the average value was calculated with N/25 mm.

Lap shear testing was investigated using a texture analyzer. The tested specimens were cut into
smaller pieces with a width of 25 mm. After being removed from a silicone release film, each PSA film
was attached to another PET substrate (the adhesion cross-sectional area was equal to 25 × 25 mm2

and a 2 kg rubber roller was passed over the film surface three times). The lap shear tests were
performed at a crosshead rate of 5 mm/min. The shear strain rate values were calculated using the
following equation:

Shear strain rate (%) = ∆L/t × 100 (3)

where ∆L is the moving distance and t is the thickness of the PSA film.
The shear stress property is one of the important factors of PSAs for display applications. Therefore,

researching the relationship between the shear strain rate and the thickness of the applied PSA film is
imperative for future use in the display industry [30].

Figure 4 is an evaluation of the reliability of the relative permittivity data of PSAs using a
surface/surface probe. Although general polymers have very high data reliability, the nature of
PSA is semi-solid and the thickness of the specimen is sensitively changed by the pressure of the
surface/surface probe. General polymers have very high data reliability, but the semi-solid nature
of the PSA against the thickness of the specimen may interfere with the sensitively of the touch
pressure at the surface/surface probe interface. Hence, for this reason, the reproducibility of the data
was a concern and it was difficult to establish a reliable correlation. Figure 5 shows the analysis
equipment for obtaining data with a higher reliability of PSA. It consisted of (a) an impedance analyzer
(1260 Impedance Analyser, Solartron Analytical, UK), (b) a dielectric interface (1296 Dielectric Interface,
Solartron Analytical, UK), and (c) a chamber (micro vacuum probe station, NEXTRON Co., Ltd.,
Republic of Korea). The permittivity of a PSA sheet was investigated using the more delicate micro
vacuum probe station. The frequency range was set from 1 to 1000 kHz and the thickness of all PSA
films was approximately 400 µm with the sample diameter detector fixed at a circular cross-section of
10 mm.
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(a) impedance analyzer, (b) dielectric interface, and (c) micro vacuum probe station.

3. Results and Discussion

3.1. Gel Fraction

The cross-linking degree of the acrylic PSA was indirectly confirmed by calculating the insoluble
portion in toluene. Figure 6 is a graph of the gel fraction results according to the type and content of
monomer. The gel fraction value of the cross-linked PSAs decreased up to 90% as the HMDS content
increased. This result is thought to be due to the lack of functional groups capable of reacting with
the acrylic pre-polymer and the low interfacial surface energy between the acrylic-silane groups [31].
The silane group HMDS was selected because it is reported to be excellent in reducing the relative
permittivity. The effect of the result on adhesion will be described in another session. It was confirmed,
however, that the gel fraction value (in accordance with the content and all monomers except HMDS)
was about 97% or more and did not inhibit the degree of crosslinking of the acrylic PSA. This result
is attributed to the monomer C=C bond participation in the crosslinking process, preventing gel
disintegration via bond weakening.
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Figure 6. Gel fractions of crosslinked acrylic PSAs as a function of monomer type and contents.

3.2. Transmittance

Figure 7 is the measurement data of the transmittance in the visible light region as a function
of monomer content type. Transmittance of the PSA is one of the important properties because it is
closely related to the image quality of the display. Irrespective of the content type, the transmittance of
all monomers was similar to that of the neat acrylic PSA, with the exception of HMDS. In the case
of HMDS, however, comprising the same silane group, it was confirmed that the transmittance was
not significantly different from the gel fraction result, but was observed to decrease to about 85% of the
original size at 10 phr content. It was noted that the transparency of the acrylic PSA decreased as a
result of immiscibility between the acrylate and silane group in HMDS. This problem was deemed to
be limited to transparent display applications and largely dependent on the application site.
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3.3. Adhesion Performances

The underlying behavior of PSAs is related to adhesion, cohesion, and tack-related performance.
Adhesion refers to adhesion to the substrate, cohesion refers to internal bonding strength, and tack
refers to contact adhesion to the substrate [2]. Thus, in order to measure the adhesion properties of
the PSA mapped by the content type of the monomer composition, peel strength, probe tack, and lap
shear tests were conducted (see Figure 8). The peel strength and the probe tack value of HMDS with
increasing PSA showed a decreasing trend with HMDS owing to the silane group content. In lap shear
test results, maximum stress and strain at maximum stress decreased with increasing HMDS content.
In general with PSAs, when a network is formed by crosslinking, the cohesion force increases and
the tacky and peel strength values of the PSA decrease [32–35]. However, in the case of HMDS, as a
result of measuring the gel fraction, the degree of crosslinking decreased, and the adhesion properties
decreased as the content increased. In addition, one of the disadvantages of general acrylic PSAs is that
it has very low adhesion properties relative to low surface energy substrates such as polyethylene (PE),
polypropylene (PP), and polydimethylsiloxane (PDMS). For this reason, a silicone-coated PET film is
used as a protective film. Unlike other monomers, HMDS has a low polarity, so its adhesion properties
to a substrate with low surface energy are very low. That is, the attraction between the molecular
chains of the acrylic PSAs and the HMDS is weak, and this also contributes to lowering the adhesion
properties of the PSAs. The peel strength of PSAs increased consistently with the NVC content as
a result of the improvement in the intermolecular interaction with a relatively high polarity caused
by the presence of the NVC nitrogen atom. Its inclusion played a role in improving the cohesion
of the acrylic PSA [36,37]. For this reason, probe tack values and lap shear results also increased
with the increasing content. However, the effect of polarity had relatively little effect on the shear
direction. On PSA with TBA and ISTA, peel strength slightly increased as the content increased with
no significant difference. When comparing TBA and ISTA in terms of chemical structure, ISTA with
a comparatively larger molecular weight decreased the wettability and its presence was marked by
an overall decrease compared with the branch structured TBA configuration. Probe tack results also
showed a similar tendency with NVC as the TBA content increased, whereas ISTA having a long
alkyl chain group did not significantly affect the value. Similar to NVC, TBA and ISTA also did not
have a significant impact on lap shear values. However, it should be noted that the value was higher
than that of the PSA to which HMDS was added, and the standard deviation accordingly decreased.
This result shows a more stable result because NVC, TBA, and ISTA have C=C groups capable of
reacting with residual acrylic monomers, crosslinking agent, and acrylic pre-polymers unlike HMDS.
On the other hand, the HMDS monomer that did not participate in the reaction instead generated a
bubble-like content during the crosslinking process of the acrylic PSA. The resulting phenomenon
is ascribed to the adhesion strength decrease accompanied by an increase in the standard deviation
(see Figure 9).

3.4. Relative Permittivity

The relative permittivity in the low frequency region according to the type and content of the
monomer was investigated as shown in Figure 10. Regardless of the chemical structure of monomer,
the relative permittivity of the acrylic PSA to which the monomer was added began to decrease in all
measured frequency ranges investigated. This may arise as a result of the participation of the monomer
in a crosslinking reaction in the acrylic pre-polymer resulting in a form a free volume between the
acrylic molecular chains [24–29]. However, the relative dielectric constant of the acrylic PSA was
observed to rise gradually above a certain threshold of the monomer content. The threshold marked
differences that related to the functional groups of the monomer. HMDS and TBA began to increase
at 8 phr or more, and NVC and ISTA at 4 phr or more. This result can be explained in two ways.
Firstly, the monomer (especially HMDS) that did not react with the acrylic pre-polymer was not present
in the acrylic PSA, as shown in the gel fraction and adhesion performances. Secondly, when the content
of the monomer exceeds a certain level, it becomes excessive compared with the capacity and monomer
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aggregation results in a decrease in the efficiency in the free volume formation. Through this result,
the monomers were effective in lowering the relative permittivity of the acrylic PSAs (see Figure 11).
In addition, it was confirmed that there is a difference in the optimal content according to the chemical
structure of the monomers.Polymers 2020, 12, x FOR PEER REVIEW 9 of 14 
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In the PSA display, the value of the relative permittivity at a particular frequency is very important.
In particular, the relative permittivity that accompanies the touch sensitivity of the TSP is related to a
low frequency region. In this region, a degree of variability in the relative permittivity is expected
and deviation from the required value varies with frequency. Figure 12 is a graph that summarizes
the relative permittivity at a specific frequency. As mentioned above, the relative permittivity was
observed to decrease upon addition of the monomer and this tendency varied depending on the
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chemical structure of the monomer. As in the lap shear test result, it is believed that air bubbles may
occur by evaporation of the aggregated monomers from heat generation via ultraviolet exposure during
the crosslinking process. In addition, the air bubbles had a greater effect on the relative permittivity
than the adhesion performances. According to previous studies, it has been reported that the relative
permittivity of polymer can vary greatly depending on the air gap [38–40].
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4. Conclusions

A study was conducted on the relative permittivity of PSA, which is closely related to the touch
sensitivity of TSP. To lower the relative permittivity of PSA, four types of monomers were selected.
The gel fraction value and transmittance according to the chemical structure and content of the
monomer did not show a significant difference compared with the pristine acrylic PSA. However, at
10 phr of HMDS comprising a silane group, the gel fraction value decreased to about 90% and the
transmittance decreased to about 85%. As a result, the adhesion performances deteriorated owing to
immiscibility between the nonpolar HMDS and the acrylic molecular chain. In contrast, the adhesion
properties improved as a result of the polarity reaction by the nitrogen group of NVC, TBA, and ISTA.
Branched and long alkyl chain grouped monomers did not significantly affect the adhesion properties.
In addition, it was confirmed that the monomers devoid of functional groups capable of reacting with
the acrylic pre-polymer remained generating bubbles by heat evaporation and impacting the adhesion
properties. Regardless of the type of monomer, the relative dielectric constant of the PSA decreased
and the relative permittivity began to rise above a certain content. This is because of the generation
of air bubbles due to heat generation in the cross-linking process, likely resulting from monomer
aggregation. In hindsight, the optimum content of the monomer was effective in lowering the relative
permittivity as a result of the formation of free volume, but the adhesion performances and the relative
dielectric constant were affected by bubbles caused by evaporation.
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As shown in this study, the adhesion performance changed according to the type of monomer,
and as a result, the relative permittivity can be adjusted according to monomer content. In the future,
we plan to further investigate the application methods for monomer control, adhesion properties,
and relative permittivity of acrylic PSA. We aim to study the behavior of adhesion performance and
relative permittivity when the dispersibility of monomer is enhanced by producing a pre-polymer by
simultaneously reacting reactive acrylic monomer and monomer via in situ polymerization.
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